ASCR - Computer Science Highlight

Objectives

- Improve programmer productivity for building sophisticated parallel Fortran applications
- Achieve high performance and scalability on leadership computing platforms
- Demonstrate value for mission-critical DOE codes

Productivity = Performance / SLOC

Performance (Cray XT4)

	HPC Challenge				
# of cores	STREAM Triad [†] (TByte/s)	RandomAccess* (GUP/s)	Global HPL [†] (TFlop/s)	Global FFT [†] (GFlop/s)	
64	0.14	0.08	0.36	6.69	
256	0.54	0.24	1.36	22.82	
1024	2.18	0.69	4.99	67.80	
4096	8.73	2.01	18.3	187.04	
Alternative days for the second					

easured on Jagua

Office of Science

Source lines of code (SLOC)

HPC Challenge Benchmark	CAF 2.0 SLOC	MPI SLOC
Randomaccess	409	787
EP STREAM Triad	58	329
Global HPL	786	8800
Global FFT	~390	1130

Notes

- EP STREAM: 66% of memory B/W peak
- Randomaccess: high performance without special-purpose runtime
- HPL: 49% of FP peak at @ 4096 cores (uses dgemm)

Impact

- Influenced Fortran 2008 standard (adopted Oct 2010)
- With LBNL, fixed scaling of GASNet communication library on supercomputers
- Improved Fortran support in ROSE compiler infrastructure

Accomplishments in FY11

- Awarded "Most Productive Language," HPC Challenge Awards at SC10
- Demonstrated scalable performance on HPC Challenge benchmarks (IPDPS 11)
- Designed and implemented language extensions for asynchrony (PGAS 10)
 - collectives, copies, and function shipping