
Introduction to HCAF:
Hierarchical Coarray Fortran

Scott K. Warren
Rice University

Outline

• Overview

• HCAF Hierarchy Model

• Hierarchical Abstractions

• Language Constructs

2

• Motivation
• Large parallel computers are deeply hierarchical

• Applications must exploit this hierarchy, not ignore it

• HCAF goals
• Explicit hierarchical locality in PGAS model
• Dynamic task and data parallelism
• Portable performance across machine topologies
• In the spirit of Fortran
• Extension of Rice CAF 2.0 with few incompatibilities

• Approach
• Language exposes hierarchy, programmer exploits it
• Exposed hierarchies automagically mapped to hardware

• Disclaimers
• This work is preliminary
• Still some pending design issues
• No implementation yet
• Irregular codes and heterogenous hardware are TBD

Hierarchical Coarray Fortran (HCAF)

4 nodes x 2 sockets

1 socket = 12 cores

NERSC Edison
Cray XC30

8-level hierarchy

3

HCAF Goals

• Focus on dense array handling
• Emphasis on performance
• Strong type checking
• Aggressive static optimization

4

Hierarchical locality, PGAS, and dynamic parallelism  
in the spirit of Fortran

What do I mean by “spirit of Fortran” ?

HCAF Design Principles

• Optimizable and manually controllable
• Programmer makes high-level decisions, can intervene at low level if necessary

• Compiler is responsible for most performance details

• Explicit hierarchical locality
• Single hierarchy model for hardware, teams, coarrays, task/data parallelism

• Hierarchy abstraction for locality-aware programming in a hardware-independent way

• Single programming model across all hierarchy levels (“H-PGAS into the node”)

• Teams & coarrays on sets of cores across or within nodes

• Async, do-parallel, collectives on any team across or within nodes

• Mixed global-view & local-view programming
• Hierarchical tiling supports both element-wise & tile-wise access (global and local view)

• Relative locality redefines coarray local-vs-remote distinction to within-vs-outside current locale

• Strong typing and statically known locality
• Type system captures hierarchical structure of teams and coarrays

• Static correctness checking of hierarchy references (e.g. subscript rank)

• Static locality-aware optimization

• Dynamic hierarchy supported by runtime checking

5

Related Work

• Hierarchically Tiled Arrays and HPF
• HTA's are hierarchical, but dynamic tiling ⇒ no static optimization

• HPF has static tiling info => aggressive optimization, but not hierarchical

• HCAF: hierarchical tiling with static info for locality optimization

• Hierarchical Place Trees and Titanium Hierarchical Teams
• HPTs model locality only intra-node and are global & fixed at startup

• Titanium teams are programmable & modular, but model only inter-image locality

• HCAF: programmable, modular teams extending inter-node to intra-image

• Topology Mapping
• Two approaches: graph-based (LibTopoMap) and tree-based (TreeMatch, Rubik)

• TreeMatch maps arbitrary-size trees, but trees are unordered

• Rubik uses Cartesian topologies but maps same-size trees

• HCAF: maps arbitrary-size trees with Cartesian topologies

• Dynamic Parallelism & Work Stealing (X10, Habanero, HotSLAW et al)
• Locality-aware fork-join parallelism + parallel loops based on fork-join

• Sophisticated inter- and intra-node hierarchical work stealing algorithms

• HCAF: same, but with more static info for locality optimization

6

Opportunity: Statically-known Hierarchical Tiling

[Our] current implementation as a library forces to use dynamic analysis techniques to
determine the communication patterns required when data is to be shuffled among
processors. A compiler could calculate statically those patterns when they are
regular enough, and generate a code with less overhead.

“Programming for Parallelism and Locality with Hierarchically Tiled Arrays”, Bikshandi et al, 2006.

(emphasis added)

Cross-component optimization is essential to attain reasonable performance. For
languages like HPF, compilers synthesize message passing communication operations
and manage local buffers. Interprocedural analysis can reduce the frequency and
volume of communication significantly. In the HTA library, communication
optimization is in the hands of the programmer. A possible concern is that the
programmer may not use the library efficiently.

“Optimization Techniques for Efficient HTA Programs”, Fraguela, Bikshandi, et al, 2012.

(summarized)

7

Opportunity: Machine-independent Explicit Locality

8

• Locale denotes a relatively compact subset of hardware

• Team provides abstraction of hardware subset with desired topology

• Coarray exposes data locality for explicit management by application

• Map M1 distributes data over application topology

• Map M2 embeds application topology into physical topology

hardware

team
coarray

locale

abstract hardware subset  
w/ application topology

concrete hardware subset  
w/ physical topology

explicit-locality
data object

M1M2

⎫

｜

｜

｜

｜

⎬

｜

｜

｜

｜

⎭

machine-independent
locality-aware algorithms

⎫
｜
⎬
｜
⎭

all  
hierarchical

Outline

• Overview
• HCAF Hierarchy Model

• Resource hierarchies
• Hierarchy maps
• Hierarchy patterns

• Hierarchical Abstractions
• Language Constructs
• Implementation Ideas

9

Hierarchy: Basic Concepts

• Hierarchy here means recursive partitioning
• … of a finite set

• Each set in the hierarchy has an associated partition into subsets

• A hierarchy may be viewed as a tree of sets in two ways
• Consider the hierarchy { { {1} , {2} } , { {3} , {4} , {5} } }

• T1 has nodes labeled with included sets

• T2 has leaves labeled with owned sets; 
an interior node’s included set is the union of its children’s included sets

• We use T1 for natural global / local view, but T2 describes hardware

• HCAF uses hierarchies to represent locality
• A subtree denotes a neighborhood of things relatively close together

• A node’s children subdivide it into smaller, closer neighborhoods

• Tiling here means rectangular partitioning
• … of a rectangular n-dimensional grid into tiles, also rectangular

• A tiling may be nonaligned, aligned, or regular [1]

• Hierarchical tiling means recursive rectangular partitioning
• Each tile is partitioned into a set of sub-tiles

• Can be viewed as a hierarchy or tree — with rectangular structure

{1, 2, 3, 4, 5}

{3, 4, 5}{1, 2}

{1} {2} {3} {4} {5}

T1:

3 4 51 2

T2:

[1] P. Furtado and P. Baumann. Storage of multidimensional arrays based on arbitrary tiling, 15th International Conference on Data Engineering, pp.480–489, 1999.

T3:

nonaligned

T4:

aligned

T5:

regular

T6:

hierarchical,  
regular

10

Cartesian Resource Hierarchies

• The structure underlying locales, teams, and coarrays

• A Cartesian resource hierarchy is a tuple (V, E, {Ar}, K) where

• (V, E, A) is a rooted attributed tree with A = {Ar} ∪ {K}

• Each Ar is a resource attribute function of type Rr

• K is the topology function which assigns to each interior node n ∈ V 
with children Cn a Cartesian topology K(n) for Cn

• A resource attribute function of type R is some f : V → P(R)  
where
• R is a finite set of resource elements and P(R) is the power set of R

• ∀ n ∈ V with children Cn : {f(c) | c ∈ Cn} is a partition of f(n)

• ∀ leaf n ∈ V : f(n) is a singleton

• A Cartesian topology for V is a function t : Dk → V where
• t is one-to-one (need not be onto)

• Dk = ∏i [Li, Ui] is a k-dimensional Cartesian domain (ie with rank k)

• {Li} and {Ui} are the lower and upper bounds of Dk

• The shape of the topology is (U1 - L1, U2 - L2, … Uk - Lk)
11

g h

i j

c

e f

r

a b

d

K(r) :  
(1) ↦ a  
(2) ↦ b

K(a) :  
(1,1) ↦ c  
(2,1) ↦ d  
(1,2) ↦ e  
(2,2) ↦ f

K(b) :  
(1,1) ↦ g 
(2,1) ↦ h 
(1,2) ↦ i  
(2,2) ↦ j

f :  
r ↦ {1,2,3,4,5,6,7,8}  
a ↦ {1,2,3,4}  
b ↦ {5,6,7,8}  
c ↦ {1}
d ↦ {2}
e ↦ {3}

f ↦ {4}
g ↦ {5}
h ↦ {6}
i ↦ {7}
j ↦ {8}
 

{1,2,3,4} {5,6,7,8}

{1,2,3,4,5,6,7,8}

Characterization of Cartesian Hierarchies

g h

i j

c

e f

r

a b

d

• A d-uniform hierarchy is one where every leaf has depth d

• A d-ranked hierarchy is one where
• Every leaf node has depth ≥ d

• ∀ d′ < d ∃ kd′ s.t. every node of depth d′ has a topology of rank kd′
• Then the d-rank of the hierarchy is (k0, k2, … kd-1)

• A ranked hierarchy is d-ranked and d-uniform for some d;  
then (k0, k2, … kd-1) is its rank

• A d-regular hierarchy is one where
• The hierarchy is d-ranked
• ∀ d′ < d ∃ Sd′ s.t. every node of depth d′ has a topology of shape Sd′
• Then the d-shape of the hierarchy is (S0, S2, … Sd-1)

• A regular hierarchy is d-regular and d-uniform for some d;  
then (S0, S2, … Sd-1) is its shape

• HCAF uses these properties for security and efficiency:
• Locales and teams are ranked; coarrays are regular

• Types of hierarchical objects have d-rank type parameters 
for type checking and optimization of subscripts and loops

regular hierarchy of depth 2
hierarchy rank = (1, 2)
hierarchy shape = ((2), (2, 2))

12

Tiled Resource Hierarchies

• A tiled resource hierarchy is a tuple (V, E, K, {Ar}, T) where

• (V, E, K, {Ar}) is a Cartesian resource hierarchy

• At ∈ {Ar} is the tiled resource of type Rt

• T is the tiling function, a resource attribute assigning to each node n ∈ V 
a Cartesian topology T(n) for At(n) which satisfies certain conditions

• Rt is the set of tiled elements, At(n) ⊂ Rt is the tile at n,  
and T(n) is the element topology at n

• T(n) specifies an index tuple for each tile element of n’s tile

• T must satisfy tiling conditions at every n ∈ V with children Cn :

• {T(c) | c ∈ Cn} is a partition of T(n), viewing the functions as sets of pairs

• The tile at n has rank k and bounds [Li] and [Ui] of Dk, where T(n) : Dk ➝ V

• Thus a given tile element has the same indices at every level of tiling;  
HCAF uses this convention for subscripting teams and coarrays

• Rank and shape are defined for both elements and tiles at a node:
• We use rank, shape, and size for the element-wise topology at a node

• We use corank, coshape, and cosize for the tile-wise topology at a node

13

h i

j k

d

f g

a

b c

e

uniform hierarchy of depth 2
hierarchy rank = (1, 2)
hierarchy shape = ((2), (2, 2))

rank = 2, shape = (8, 8)

corank = 1, coshape = (2)

cb

corank = 2, coshape = (2, 2)

rank = 2, shape = (4, 8)

f g

ed

Hierarchy Maps

• A hierarchy map M from G to H is a tuple (G, H, m) where
• m : VG → P(VH) is descendant-preserving, i.e.  

if p, q ∈ VG and p is a descendant of q, then  
∀ r ∈ m(p) ∃ s ∈ m(q) such that r is a descendant of s

• This preserves our notion of locality (relative closeness)

• Cartesian topologies are not preserved, but should be “respected”

• Hierarchy maps adapt an application’s virtual hierarchies  
to fit the current job’s hardware hierarchy
• A hierarchical team is mapped to a set of processors  

 (with corresponding hierarchical structure)

• A hierarchical coarray is mapped to a set of memories  
 (with corresponding hierarchical structure)

• Hierarchy map composition provides modularity:  
e.g. if H is the hardware and G is a team passed to a library,  
the library realizes its preferred team structure G2 

by composing a new map with G’s existing map:  
 G2 → G → H

• Goodness of maps and finding good ones are TBD
• But there are many relevant papers & working systems

s

t ub

d e

a

c

H: G:

t is a descendant of s
m(t) = { b, d }, m(s) = { a }
b is a descendant of a ✔
d is a descendant of a ✔

f

gb

d e

a

c

G2:

s

t ub

d e

a

c

G2:

14

 Hierarchy Map Examples

15

s

t u

a

b c

d e f g

shallow to deep

s

t u

a

b c

d e f g

deep to shallow

low to high rank

s

t wb

d e

a

c u v

s

t ucb e

a

d

coarse to fine

s

t u cb e

a

d

fine to coarse high to low rank

t wu v

s

b

d e

a

ct

 Goodness of Hierarchy Maps

16

s

r

t

a

b c

Better: m(b) and m(c) in nearby locale r

s u

q

a

b c

Worse: m(b) and m(c) in distant locale q

 Goodness of Hierarchy Maps

17

s

r

t

a

b c

Better: m(b) and m(c) in nearby locale r 
⇒ b ↔ c communicate via memory access

shared

distributed

shared

s t

q

a

b c

Worse: m(b) and m(c) in distant locale q  
⇒ b ↔ c communicate via messaging

distributed

sharedshared

(hierarchical team → hardware)

 Goodness of Hierarchy Maps

18

Bad: m(b), m(c), and m(d) in distant locale q  
…and can’t do better!  

q

r

s t

b

c d e

• Best mapping between a given pair of hierarchies may not be great
• How serious this is depends on the situation
• E.g. the map above may be fine if all target locales are shared-memory

• For best results: choose a source hierarchy that maps well to target

• HCAF’s answer for this is tiling patterns

Tiling Patterns

• A tiling pattern is a pair P = (R, M) where
• R = (k0, k2, … kd-1) is a d-rank

• M is a possibly infinite set of tiled resource hierarchies with d-rank R,  
comprising all the matches of P

• A matching function is some Match : (P, Dk , HT) ↦ (HO, m)  
where

• P = ((k0, k2, … kd-1), M) is the tiling pattern to be matched

• Dk is the input domain, a Cartesian domain with rank k = k0

• HT is the target hierarchy, a tiled resource hierarchy that the  
match result should conform to

• HO ∈ M is the output hierarchy, a tiled resource hierarchy satisfying:

• HR ∈ M, i.e. the output hierarchy matches the pattern P

• Domain(T(r)) = Dk, where r is the root of HO ;  
i.e. the top level tile of HO is the input domain,  
i.e. the input domain is tiled by P to give the output hierarchy

• m is the output hierarchy map from HR to HT;  
i.e. a view of the output hierarchy as an abstraction of the target

• Of course we prefer that m be a good hierarchy map

19

⎫
｜
⎬
｜
⎭ ⎫

｜
⎬
｜
⎭

M =

R = (2)

P =

Match(P, ,) =

Match(P, ,) =

Outline

• Overview
• HCAF Hierarchy Model
• Hierarchical Abstractions

• Locales: machine topology
• Teams: processor groups
• Coarrays: data objects

• Language Constructs

20

Locales: Hierarchical Machine Topology

• Locales are units of computer hardware locality
• Nested regions of a parallel computer containing computing resources 

which are relatively close in terms of communication cost
• E.g. cores, dies, sockets, nodes, boards, chassis, cabinets, ...

• A locale is a Cartesian resource hierarchy (V, E, A, K) where
• V is the set of regions and E is the containment relation among them

• A = {Procs, Mems, Comm} describes each locale’s computing elements

• Procs : V → P(P) is the processor resource function

• P is the set of processors (hardware threads)
• Procs(e) = {p1, p2, …} is the set of processors contained in locale e

• Mems : V → P(M) is the memory resource function

• M is the set of memories (RAMs or caches)
• Mems(e) = {m1, m2, …} is the set of memories contained in locale e

• Comm : V → {distributed, shared} is the communication attribute function
• distributed and shared denote respectively communication via 

message passing and memory reference
• Comm(e) is the worst-case communication kind among elements of e
• Require that no shared locale has a distributed sub-locale

21

P = {p1, p2, p3, p4}  
M = {m1, m2}

{p1, p2}  
{m1}
shared

{p1, p2, p3, p4} 
{m1, m2} 
distributed

{p1}  
{ }

shared

{p3, p4}  
{m2}  
shared

{p2}  
{ }

shared

{p3}  
{ }

shared

{p4}  
{ }

shared

Example Locale: 2 Hopper 24-core Nodes

22

2 Magny-Cours cpus / node  
2 6-core dies / socket  
2 memory paths / die  
4 HyperTransport3 links / die

nested locales

sockets

nodes

dies

cores

shared 
8 Gb/s

shared 
19 Gb/s

distributed  
6 Gb/s

shared 
42 Gb/s

M M

L1 & L2 caches

M M

L3 cacheRAM

P

Locales and Hierarchical PGAS

23

locales = hierarchically partitioned address spaces  
smaller locale = closer elements = cheaper communication

• Any processor can access any address space

• Speed of access is modeled by the smallest enclosing locale  
of a processor and the other processor or memory it accesses

• Equivalently, by the lowest common ancestor node in the  
corresponding Cartesian resource hierarchy

Locales and Hierarchical PGAS

24

shared 
8 Gb/s

shared 
19 Gb/s

distributed  
6 Gb/s

shared  
42 Gb/s

finest partition  
of address space

=
innermost locale

=
one die
⇒

shared-memory comm  
at 42 Gb/s

Locales and Hierarchical PGAS

25

shared  
8 Gb/s

shared 
19 Gb/s

distributed  
6 Gb/s

shared 
42 Gb/s

mid-level partition  
of address space

=
mid-level locale

=
one node
⇒

shared-memory comm  
at 8 Gb/s

coarsest partition  
of address space

=
top-level locale

=
two nodes
⇒

distributed-memory  
comm at 6 Gb/s

Locales and Hierarchical PGAS

26

shared 
8 Gb/s

shared 
19 Gb/s

distributed  
6 Gb/s

shared 
42 Gb/s

Teams: Hierarchical Processor Groups

• Teams are groups of hardware processors (cores)
• Nested sets of processors which are relatively close in communication cost

• Teams specify sets of processors and inherit sets of memories

• Teams serve as abstract locales to isolate application from hardware details

• A team is a Cartesian resource hierarchy T = (V, E, A, K) where
• V is the set of subteams and E is the containment relation among them
• A = {Procs, Mems, Comm} just as for locales

• A team has a hierarchy map m : VT → P(VH) where
• H is the hardware locale (root)

• m(r) is typically a sub-locale of the hardware locale, where r the root of T; 
it denotes the machine subset implementing T

• Procs(r) is the team’s set of processors, possibly a subset of Procs(m(r))

• m describes how the team’s processors are distributed on the machine

• Consider a team as a hierarchy of processors, with its memories
just inherited from its associated locale:
• Require ∀ t ∈ V : Mems(t) = Mems(m(t))

• These are the memories close to the team’s processors

• A team is mapped to hardware by the map m
27

b c

a

H:

r

s t

T:

Teams: Locality-aware Parallelism

• Teams are resources for parallel execution
• Not a set of images or threads, but a set of processors (w/ nearby memories)

• Basic unit of parallelism: spawn task on team (controls execution locality at arbitrary grain)

• Team's processors cooperate to execute in parallel all tasks spawned on it

• Team's memories hold tasks' stack frames & heap-allocated objects (by default)

• Uniform model for all concurrency in HCAF
• Task parallelism: like async/finish X10, Habanero, Chapel, CAF 2.0

• Loop parallelism: iterations are spawned on current team like X10 ateach

• Data parallelism: array intrinsics implemented as parallel loops

• Both intra-node and inter-node spawning are supported

• Hierarchical work-stealing scheduler per team
• Similar to place schedulers in Habanero’s Hierarchical Place Trees

• Both distributed-memory and shared-memory work stealing are supported

• Problem: lexical closures — Habanero/Chapel style {in, out, inout} specifiers?

• Implementation
• Berkeley HotSLAW; Quintin & Wagner; Olivier & Prins; Saraswat, Paudel et al; etc

28

Coarrays: Hierarchical Data Objects

• Coarrays are tiled groups of storage locations (elements)
• Nested tiles of elements which are relatively close in communication cost

• Coarrays specify sets of elements and inherit processors and memories

• Coarrays are allocated on teams and their tiles are placed in teams’ memories

• A coarray is a tiled resource hierarchy C = (V, E, K, A, T) where
• V is the set of sub-tiles and E is the containment relation among them

• A = {Elems, Procs, Mems, Comm} where Elems ↦ storage locations in each tile

• Elems(r) is the coarray’s top level (global-view) tile and T(r) is the tile’s shape

• A coarray has a hierarchy map m : VC → P(VT) where
• T is the team on which C is allocated

• m(r) is typically the root of the team, where r is the root of C

• m describes how the coarray’s tiles are distributed on the team

• Consider a coarray as a hierarchy of elements, with its processors
and memories just inherited from its associated team:
• Require ∀ c ∈ VC : Procs(c) = Procs(m(c)) and Mems(c) = Mems(m(c))

• These are the processors owning and memories storing the coarray

• A coarray is mapped to hardware by the composition C → T → H

29

b c

a

H:

T:

C:

Example: Coarray on Team on 2 Hopper Nodes

30

Hierarchical coarray
real :: A(16,16)
tiling[2,2][2,2] :: A
allocate(A) on(T)Hierarchical team

team :: T
tiling[2,2][2,2] :: T
allocate(T) on(TEAM_HW)

Hierarchical locale
H = 2 Hopper nodes

Hierarchy map
A → T

Hierarchy map
T → H

• Team and coarray hierarchies have same shape here,  
but this is not required.

• Each leaf coarray tile is allocated in one die’s memories  
and has 3 cores of the die assigned to it.

• Each 3-core leaf subteam is mapped to a die’s locale,  
which is the smallest locale enclosing its cores.

• The team is a 3-level 16-leaf abstraction of the  
5-level 48-leaf hardware hierarchy.

Outline

• Overview
• HCAF Hierarchy Model
• Hierarchical Abstractions
• Language Constructs

• Tiling patterns & generic hierarchy
• Hierarchical teams
• Hierarchical coarrays
• Task, data, and SPMD parallelism
• Example: Naive Matrix Multiply

31

Tiling Patterns

• Problem:
• Locality-aware applications and optimizers statically depend on hierarchy shape

• Hardware hierarchy is known only at runtime (cf. machine type & job scheduler)

• Need abstraction to decouple application’s virtual hierarchies from machine’s real hierarchy
• But manually mapping virtual to real is difficult

• Solution:
• Tiling pattern describes a set of desirable hierarchies

• Compiler statically optimizes using properties common to all set members

• Runtime dynamically chooses desirable hierarchy with a good mapping to hardware

• Tiling pattern specifies:
• Hierarchy rank (first d levels) and set of hierarchy coshapes

• Required communication kind at each level (distributed vs shared memory)

• Tile distributions and Rubik-style tilts/shifts/etc

• Example tiling pattern 'P' with hierarchy rank (2,1):

 tiling :: P(N)  
 [N block, N cyclic(100)]  
 [2..32] shared  
 end tiling

32

level specification

comm kind

distribution

parameter

Tiling Patterns: Level & Dimension Specs

33

tile rank = 2
tile shape = (2, 2)

corank = 2
coshape = (2, 2)

tile rank = 2
tile shape = (2, 4)

corank = 1
coshape = (2)

tile rank = 2
tile shape = (4, 2)

corank = 1
coshape = (2)

tile rank = 1
tile shape = (2)

corank = 2
coshape = (4, 2)

tile rank = 1
tile shape = (4)

corank = 1
coshape = (4)

rank = 2
shape = (4, 4)

corank = 0

[*,2] [-,*][2,*][2,2] [-,2]

 n divides into n tiles
#n divides into tiles of size n
 * leaves dimension undivided
 - “tiles out” dimension

level spec: [2,*]
dimension specs

Tiling Patterns: Level & Dimension Specs

34

tile rank = 1
tile shape = (4)

tile rank = 2
tile shape = (2, 2)

tile rank = 2
tile shape = (2, 4)

tile rank = 2
tile shape = (4, 2)

tile rank = 1
tile shape = (2)

rank = 2
shape = (4, 4)

corank = 0

[*,2] [-,*][2,*][2,2] [-,2]

level spec: [2,*]
dimension specs

 n divides into n tiles
#n divides into tiles of size n
 * leaves dimension undivided
 - “tiles out” dimension

Tiling Patterns: Parameters & Constraints

• Parametrized pattern specifies a set of hierarchies
• Parameters are positive integer variables local to pattern

• Constraints are arithmetic predicates over parameters

• An instantiation is an assignment of values to parameters 
s.t. all constraints are satisfied

• Pattern matching:
• Given hierarchy H, pattern P, and input tile T,  

find instantiation Pʹ of P and Hʹ = tiling(T, Pʹ) s.t.  
∃ “good” mapping M : Hʹ → H

• Result is (Hʹ, M)

• Implicit parameter ≡ unnamed param + constraint
• Range: expr .. expr

• Extents in dimension-specs are Fortran exprs
• Treated like array bound expressions

• Dimension-specs have lower and upper bounds
• Like array bounds: extent : extent

• Empty lower bound ≣ 1, empty upper bound ≣ any  
0 : 7..15 ⇒ 8 ≤ n ≤ 16 elements indexed from 0  

 : ⇒ n > 0 elements indexed from 1
35

tiling :: P(N)  
 [1..4]  
 [N, N]  
where
 N <= 3  
end tiling

explicit parameter

constraint

implicit parameter &  
constraint

Tiling Patterns: Distribution & Comm Specs

36

• Distribution specifier modifies dimension-spec
• Specifies a dimension’s assignment of elements to tiles 

i.e partially specifies T(c) at each child c of tiled node

• Classic distribution specs like HPF:  
 block contiguous w/ extent n or #n  
 cyclic(k) cyclic over n w/ extent k

• Additional distribution specs like Rubik  
 tilt tile boundary tilted 
 zigzag tile boundary zig-zagged 
 zorder space filling curve

• Default distribution is block, yields conventional tiling

• Communication specifier modifies level-spec
• Specifies worst-case communication type at level  
⇒ acts as a constraint in pattern matching

• Types of communication:  
 distributed message passing 
 shared memory access 
 image SPMD program instance (shared)  
 any unspecified (the default)

 [2 block, 2 cyclic(1)]

Generic Hierarchy Operations

• H may be a locale, a team, or a coarray (some operations require hierarchy be regular)
• Shape and size

• codepth(H) number of tiling levels (0 ⇒ leaf)

• corank(H), corank(H,k) number of tile dimensions at top or specified tiling level

• coshape(H), coshape(H,k) tuple of tile extents at top or specified tiling level

• cosize(H), cosize(H,k) total number of tiles at top or specified tiling level

• rank(H), rank(H,k) number of element dimensions at top or specified tiling level

• shape(H), shape(H,k) tuple of element extents at top or specified tiling level

• size(H), size(H,k) total number of elements at top or specified tiling level

• Access
• H[i,j,…] tile access

• H[l:u:s,…] tile section access

• H(i,j,…) element access

• H(l:u:s,…) element section access

• Locality
• locale(H) opaque id of hardware locale to which H maps

• locale_info(id) description of hardware locale identified by id

• Mapping
• map_hierarchy(H,T) new hierarchy by tiling H with tiling pattern T  
map_hierarchy(H,H2) new hierarchy by tiling H with tiling pattern of H2

37

Constructs: Hierarchical Teams

• A team is a cartesian hierarchy of processors (not SPMD instances)
• Team’s processors cooperate to execute tasks spawned dynamically on the team
• Team’s processors communicate and synchronize via collectives as in CAF 2.0
• Teams are characterized by the (worst case) kind of communication available between processors

• Distributed-memory team: communication by message passing
• Shared-memory team: communication by memory access
• Image team: communication by global variables  

 — a shared-memory team within an execution of the SPMD program
• Team characterization is determined by locale to which it is mapped

• Team variable declarations
• Recall that HCAF hierarchy types include a partial characterization of the hierarchy (i.e. of top d levels)

• So HCAF’s type team is parametrized by a tiling rank:  
 team, tiling[:,:] :: t1 tiling rank is (2)  
 team, tiling[:,:][:] :: t2 tiling rank is (2,1)  
 team, tiling(T) :: t3 tiling rank is T’s rank

• Default tiling rank is “any”:  
 team :: t rank is ()

• Team sub-typing by tiling rank subsumption:  
 t = t1 ✔ since () is a prefix of (2)  
 t1 = t2 ✔ since (2) is a prefix of (2,1)  
 t2 = t1 ✘ since (2,1) is not a prefix of (2)

• Allows static type checking of team variable uses

38

Constructs: Hierarchical Teams (2)

• Team construction
• Predefined team values:  

 TEAM_HARDWARE precisely describes hierarchy of current job’s machine partition  
 TEAM_WORLD as in CAF 2.0 (all processors, partitioned into image teams)  
 TEAM_DEFAULT as in CAF 2.0

• By splitting with a tiling pattern:  
 t3 = tile_map(TEAM_HARDWARE, T)

• By CAF 2.0’s notion of team splitting?
• Don’t know how to make this work hierarchically

• Team usage
• Allocate a coarray on a team

• Perform collectives on a team

• Team-oriented control structures:

• with team t as in CAF 2.0

• with subteam t our version of Titanium team_split statement

• select subteam t our version of Titanium partition statement 
 case <stmt> …  
end select

39

Data Parallelism: Parallel Loops

• Explicit data parallelism via loops
• Iterating over element indices of a coarray:  

 do parallel(i, j in A)  
 <statement list>  
 end

• Iterating over tile indices of a coarray:  
 do parallel(tile i, j in A)  
 <statement list>  
 end

• Iterating over part of a coarray:  
 do parallel(tile j in A[k,:])  
 <statement list>  
 end

• Loop indices can be omitted ⇒ rank-independent data parallelism  
 do parallel(tile in A)  
 <statement list>  
 end

• Locality via hierarchy mapping:
• Iterations of body are all spawned at once into implicit finish

• Each iteration is spawned on the subteam owning the indexed element or tile

40

Task Parallelism: Async & Finish

• Two forms of async, analogous to Fortran’s two forms of if
• async(t) <statement>

• async(t)  
 <statement-list>  
end async

• Can supply data reference instead of team ⇒ spawns on team owning the data

• Two forms of finish
• finish <statement>

• finish  
 <statement-list>  
end finish

• Additional event argument signals completion
• async(team = t, event = e) <statement>

• async(team = t, event = e)  
 <statement list>  
end async

41

What about SPMD Parallelism?

• What are the essential differences between task and SPMD parallelism?
• Number of “program images”

• Number of instantiations of libraries, number of copies of global variables

• This matters because program scope is special!

• Degree of parallelism present at startup
• Task parallel => 1 control thread; SMPD parallel => P control threads

• This matters because of data parallel loops:

• are they fork/joins ?

• or are they collectives ?

• Can SPMD be modeled as implicit an initial fork and a final join ?

• Can a data-parallel loop on a distributed-memory team have the same semantics as 
a data-parallel loop on a shared-memory team?
• if not, how can we have one programming model with uniform semantics 

throughout the machine hierarchy?

• See following example for more insight

42

Example: Naive Matrix Multiply

program main

 tiling :: T(m1, m2)
 [m1, m1]

[m2, m2] shared
 end

 real, dimension(:,:), tiling(T) :: A, B, C
 integer, parameter :: n = 1000

 allocate(A(n,n), B(n,n), C(n,n)) on(TEAM_HARDWARE)
 ! initialize A and B somehow …
 C = 0

 call matmul(A, B, C)

end program

43

Example: Naive Matrix Multiply cont’d

subroutine matmul(A, B, C)
 real :: A(:,:)[#], B(:,:)[#], C(:,:)[#]
 integer :: n

 select tiling(A)
 case [:,:]
 n = cosize(A, 1)
 do parallel(tile i, j in C)
 do k = 1, n
 call matmul(A[i,k], B[k,j], C)
 end do
 end do
 case []
 n = size(A, 1)
 do parallel(i, j in C)
 do k = 1, n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)
 end do
 end do
 end select

end subroutine

44

