Experiences with Sweep3D Implementations in Co-arrayr&ort

Cristian Coarfa Yuri Dotsenko John Mellor-Crummey

Dept. of Computer Science, Rice University, Houston TX &,00SA

Abstract

As part of the recent focus on increasing the productivitpafallel application developers, Co-array Fortran
(CAF) has emerged as an appealing alternative to the Me§&ssng Interface (MPI). CAF belongs to the family
of global address space parallel programming languages) lsmguages provide the abstraction of globally ad-
dressable memory accessed using one-sided communicatitice University we are developing an open source,
multiplatform CAF compiler. Our earlier studies show tha&FCprograms achieve similar performance to that of
corresponding MPI codes for the NAS Parallel Benchmarksthispaper, we present a study of several CAF im-
plementations of Sweep3D on four cluster architectures.akiéyze the impact of using one-sided communication
in Sweep3D, identify potential sources of inefficiencied anggest ways to address them. Our results show that we
achieve comparable performance to that of the MPI versiothi@e cluster-based architectures and outperform it by
up to 10% on the SGI Altix 3000.

1 Introduction

Parallel computing is a vital technology for complex sdimsimulations, however, achieving high performance with
parallel programs is difficult. High performance parallebgrams depend on the interplay of good programming
models, effective optimizing compilers and capable hardwaatforms. For a parallel programming model to be
appealing, it has to meet three major goals: programs shmukhsy to write, it should be expressive and it should
enable transparent performance portability. Ideally\etiper would write a parallel program once and then a palrall
compiler would tailor the code to achieve high-performamaé¢he current parallel platform of choice.

Today, thede factostandard of parallel programming is the Message Passiegidice (MPI) [GSNL98]. It pro-
vides a standard for two-sided communication and is availab almost every parallel platform. Developers have
found that it is difficult and error-prone to write parallelograms using the MPI model. Due to the explicit nature
of MPI communication, MPI programs are not well-suited tonpiler-based improvement, which leaves the end user
solely responsible for choreographing the communicatimh@mputation to achieve high performance.

Recently, there has been a significant interest in tryingrprove the productivity of parallel programmers by
using language-based parallel programming models thataabsway most of the complex details of library-based
high-performance communication. Experience with early-ldBmpilers has shown that in the absence of very pow-
erful parallelizing compilers, it is crucial to provide grammers with sufficient control to enable them to employ
sophisticated parallelizations by hand. The family of gloaddress space languages, including Co-Array Fortran
(CAF) [NR98a, NR98b] and Unified Parallel C (UPC) [CD@9], has attracted interest as promising a near-term

*This work was supported in part by the Department of EnergleuGrant DE-FC03-01ER25504/A000, the Los Alamos CompBitéEnce
Institute (LACSI) through LANL contract number 03891-99-&s part of the prime contract (W-7405-ENG-36) between @& @nd the Regents
of the University of California, Texas Advanced Technoldgypgram under Grant 003604-0059-2001, and Compaq Com@ateoration under
a cooperative research agreement. This research wasrpedan part using the Molecular Science Computing FacifysCF) in the William
R. Wiley Environmental Molecular Sciences Laboratory, aamal scientific user facility sponsored by the U.S. Depant of Energy’s Office of
Biological and Environmental Research and located at tedi®alorthwest National Laboratory. Pacific Northwest ieoated for the Department
of Energy by Battelle. The computations were performed it pa an Itanium cluster purchased with support from the N8&eu Grant EIA-
0216467, Intel, and Hewlett Packard and on the NationalnBeid-oundation Terascale Computing System at the PittsHBupercomputing
Center.

alternative to MPI. Both CAF and UPC employ the single-pemgrmultiple-data (SPMD) model for parallel pro-
gramming and are simple extensions to widely-used langydgmtran 90 and C respectively. The global address
space abstraction of these languages naturally supporis-gided communication style. With communication and
synchronization as part of the language, these languagesyare amenable to compiler-directed communication
optimization than MPI programs.

At Rice University we are developingaf c—a portable, open-source compiler for Co-Array Fortrart thex-
forms source-to-source translation of CAF codes into Bar80 code augmented with calls to the ARMCI [NC99]
communication library. Previous studies [CDEMCO03, DCMCDL£MCCO04] show that even without sophisticated
automatic communication optimization, our CAF compileakles us to achieve performance comparable to that of
hand optimized MPI applications for CAF versions of the walbwn NAS benchmarks [BH5].

In this paper we describe our experiences developing SV2gp&95] implementations in CAF, compare their
performance with that of LANL's original MPI version and dywe the performance differences between these codes
on several platforms. Our CAF versions of Sweep3D use atedsiommunication. While the CAF model eliminates
the need for managing messaging in the program, it leaves tessponsible for managing memory for communicated
data. We first wrote a CAF version that closely follows theature of the LANL's original MPI code. Because shared
arrays are updated in place, this version is very synchranblext, we built a CAF version that adds a measure of
asynchrony tolerance by using multi-version storage fonmainicated arrays; this enables communication to overlap
with computation. We built a third CAF version to help us urstiend the differences in performance between the two
prior versions and MPI. To gain deeper insight into the panfince differences, we implemented a microbenchmark
which mimics the one-sided communication pattern in SwBep3

Our results show that for Sweep3D, our best CAF version &ehiscalability comparable to the MPI version on
cluster architectures and outperforms it by up to 10% on BeAtix 3000, a hardware distributed shared-memory
platform. For cluster-based architectures we identifieéehmajor sources of inefficiency. The first is overhead
introduced by our CAF runtime library arthf c’s source-to-source translation. The second is that forep@B’s
communication pattern, ARMCI delivers lower communicatgerformance than MPI for small transfers. The third
is that ARMCI’s support for non-blocking communication skeb be refined to enable efficient combination with
unidirectional notifications for common communicationtpats, such as those found in Sweep3D. On SGI Altix
3000 the CAF versions of Sweep3D outperform the original M#?sion by performing direct data movement without
any intermediate copies; the MPI version performs more dateement, copying data to and from communication
buffers.

In the next section, we give a brief overview of the CAF pragnaing model and communication libraries for
one- and two-sided communication. In section 3 we descrlyerkplementation decisions for our CAF compiler. We
describe the blocking communication microbenchmarks badXAF and MPI versions of Sweep3D in section 4. In
section 5 we present and analyze our performance resul&Jeep3D. Section 6 summarizes our conclusions.

2 Background

Here, we briefly describe the CAF programming model, alorth extensions we developed to facilitate portable high-
performance. We then describe one-sided and two-sided cmgation libraries and their implications for parallel
application development.

2.1 Co-array Fortran and Extensions

Co-Array Fortran supports SPMD parallel programming tigtoa small set of language extensions to Fortran 90. An
executing CAF program consists of a static collection ohatyonous process images. Similar to MPI, CAF programs
explicitly manage data locality and computation distribnt However, CAF belongs to the family of Global Address
Space programming languages and provides the abstraétipobally accessible memory both for cluster-based and
for shared memory architectures.

CAF supports distributed data using a natural extensionaidrdn 90 syntax. For example, the declaration
integer :: a(n,n)[*] declares a shared co-arraywith n x m integers local to each process image. The
dimensions inside brackets are called co-dimensions. ré&ysmay also be declared for user-defined types as well

as primitive types. A local section of a co-array may be alsiog instance of a type rather than an array of type
instances.

Instead of explicitly coding message exchanges to accéaddmnging to other processes, a CAF program can di-
rectly reference non-local values using an extension to&woB0 syntax for subscripted references. For instance, pr
cesy can read the first column of co-arrayfrom proces®+1 with the right-hand side referenced6: , 1) [p+1] .

CAF has several synchronization primitiveg.nc_al | implements a synchronous barriegnc_t eam is used
for barrier-style synchronization among dynamicallysfi@dteamsof two or more processes; async_nmenory
implements a local memory fence and ensures the consistdribg process image memory by completion of all
outstanding communication requests issued by this image.

Since both remote data access and synchronization aredgaguimitives in CAF, communication and synchro-
nization are amenable to compiler-based optimization.olmtrast, communication in MPI programs is expressed in
a more detailed form, which makes it much harder to transfoeitimn a compiler. CAF also contains several features
that improve the expressiveness and power of the languafieding dynamic allocation of co-arrays, co-arrays of
user-defined types containing pointers, and fledgling supoparallel /0. A more complete description of the CAF
language can be found in [NR98b]

Our previous studies [CDEMCO03, DCMCO04] identified a few weedses of the original CAF language specifica-
tion that reduce the performance of CAF codes and propodeds®ns to CAF to avoid these sources of performance
degradation. First, the original CAF specification regsippeograms to have implicit memory fences before and after
each procedure call to ensure that the state of memory isstensbefore and after each procedure invocation. This
guarantees that each array accessed within a subroutimeagsistent state upon entry and exit from the subroutine.
In many cases, an invoked procedure does not access codatawyt all or accesses only co-array data that does
not overlap with co-array data accessed by the caller. Asnaempience, it is not possible to overlap communica-
tion with a procedure’s computation with memory fences adbthe procedure’s call sites. Second, CAF’s original
team-based synchronization required using collectivelssonization even in cases when it is not necessary or may
complicate the coding, e.g., when using multipartitionjkign93] data distribution. In [CDEMCO03], we propose
augmenting CAF with unidirectional, point-to-point symehization primitives:sync_noti fy andsync_wai t .
sync_noti fy(q) sends a notify to process image this notification is guaranteed to be seen by imgganly
after all communication events previously issued by thdfisoto imageq have been completegync_wai t (p)
blocks its caller until it receives a matching notificatioessage from the process imggeCommunication events
for CAF remote data accesses are naturally blocking. Whilke possible to exploit non-blocking communication
in some cases, automatically replacing blocking commuioicavith its non-blocking counterpart and overlapping
communication with computation requires sophisticatetgiter analysis. To enable sophisticated application deve
opers to overlap communication and computation in caseserd@mnpiler analysis cannot do so automatically, it is
useful for CAF to provide a user-level mechanism for explgitnon-blocking communication. To address that, we
have proposed a small set of directives that enable apiplicdevelopers to delay the completion of communication
events [DCMCO04].

2.2 Communication Libraries

MPI uses a two-sided (send and receive) communication modglmmunicate data between processes. With two-
sided communication, both the sender and receiver eXpltrticipate in a communication event. As a consequence,
both sender and receiver temporarily set aside their caatipatto communicate data. Having two processes complete
a point-to-point communication explicitly synchronizbe tsender and receiver.

CAF uses one-sided communicatid?JT andCGET) to access remote data. When using one-sided communication
one side specifies both source and destination of commexicktta. From the programmer’s perspective, the other
image is not aware of the communication. Thus, the one-sidedel cleanly separates data movement from syn-
chronization; this can be particularly useful for simpiiify the coding of irregular applications. On loosely-cagpl
architectures, a one-sided communication library can takentage of Remote Direct Memory Access (RDMA) ca-
pabilities of modern networks, such as Myrinet [ANS98] arub@Qrics [PcFH02]. During an RDMA data transfer,
the Network Interface Chip (NIC) controls the data movemgtitout interrupting the remote host Central Processing
Unit (CPU). This enables the CPU to compute while commuidoais in progress. On all microprocessor-based

architectures, a cache coherency protocol is used to nraicwasistency between CPU caches and memory that is
the source or sink of communication. On shared memory plagesuch as Altix 3000, one-sided communication
is performed by the CPU using load/store instructions obally addressable shared memory. The hardware uses
directory-based cache coherence to provide fast data menweand to maintain consistency between CPU caches and
(local or remote) shared memory. As our recent study [DCMg@@monstrated, on shared-memory architectures
fine-grain one-sided communication is fastest with comjénerated load/store instructions, while large contigguo
transfers are faster when transmitted usimgact py library function optimized for the target platform.

The caf ¢ compiler uses the Aggregate Remote Memory Copy Interfad®MB1) [NC99]—a multi-platform
library for high-performance one-sided communication-tagmplementation substrate for global address space
communication. ARMCI provides both blocking and split-pa@on-blocking primitives for one-sided data movement
as well as primitives for efficient unidirectional synchization. On some platforms, using split-phase primitives
enables communication to be overlapped with computatidRM&I provides an excellent implementation substrate
for global address space languages making use of coarseegramunication because it achieves high performance
on a variety of networks (including Myrinet, Quadrics, afiM’'s switch fabric for its SP systems) as well as shared
memory platforms (Cray X1, SGI Altix3000, SGI Origin2000hike insulating its clients from platform-specific
implementation issues such as shared memory, threads,MAckeRgines. A notable feature of ARMCI is its support
for non-contiguous data transfers [NTSPO02].

3 Thecaf c Compiler for Co-array Fortran

We designed theaf ¢ compiler for Co-array Fortran with the major goals of beiragtpble and delivering high-
performance on a multitude of platforms. Ideally, a prograenwill write a CAF program once in a natural style and
caf c will adapt it for high performance on the target platform bbece.

To achieve this goat af ¢ performs source-to-source transformation of CAF codefiatdran 90 code augmented
with communication operations. By employing source-tarse translationgaf ¢ aims to leverage the best back-end
compiler available on the target platform to optimize lamahputation. For communicationaf ¢ typically generates
calls to ARMCI’s one-sided communication primitives; haweg for shared memory systems it also can generate code
that uses load and store operations for communicataaf. ¢ is based on ®en64/sL [Ope02], a version of the
OPENG64 [Ope01] compiler infrastructure that we modified to supgource-to-source transformation of Fortran 90
and CAF.

To support efficient access to remote co-array data on thedest range of platforms, memory for co-arrays must
be managed by the communication substrate; typically,rtt@mory is managed separately from memory managed
conventionally by a Fortran 90 compiler’s runtime systenarréntly co-array memory is allocated and managed by
the ARMCI library. On cluster systems with RDMA capabil#jeco-arrays are allocated in memory that is registered
and pinned, which enables data transfers to be performecthjiusing the DMA engine of the NIC.

For CAF programs to perform well, access to local co-array aaust be efficient. Since co-arrays are not
supported in Fortran 90, we need to translate referencesetdotal portion of a co-array into valid Fortran 90
syntax. For performance, our generated code must be aneettabhck-end compiler optimization. In an earlier
study [DCMCCO04], we explore several alternative represiions for co-arrays. Our current strategy is to use a For-
tran 90 pointer to access local co-array data. Since cq-data is allocated outside the Fortran 90 runtime system,
we need the ability to initialize and manipulate compilepdndent Fortran 90 array descriptors (dope vectors) on
a variety of target platforms. We use the CHASM library [RSB@rom Los Alamos National Laboratory for this
purpose.

Communication events expressed with CAF’s bracket natatiast be converted into Fortran 90; however, this
is not straightforward because the remote memory may be ifiexeht address space. Although the CAF language
provides shared-memory semantics, the target architeatay not; a CAF compiler must perform transformations
to bridge this gap. On a hardware shared memory platformirémesformation is relatively straightforward since
references to remote memory in CAF can be expressed as Inddsaes to shared locations; the study [DCMCCO04]
contains a detailed exploration of the alternatives fofqrering communication on hardware shared memory systems.
The situation is more complicated for cluster-based syst&ith distributed memory.

To perform data movement on clustecgf ¢ must generate calls to a communication library to accessatat

remote node. Moreovecaf ¢ must manage storage to temporarily hold remote data needadcbomputation. For
example, in the case of a read reference of a co-array onariotagearr (:)=coarr(:)[p] + ...,atempo-
rary,Caf Tenp_coar r, is allocated just prior to the statement to hold the valutaetoar r (:) array section from
image p. Then, a call to get data from image p is issued to thiime library. The statement is rewrittenasr (:)
= Caf Tenpcoarr(:) +Thetemporaryis deallocated immediately after the statgnior a write to a
remote image, such amarr (:)[pl, p2] =. .., atemporaryCaf Tenp_coarr is allocated prior to the remote
write statement; the result of the evaluation of the rigatdhside is stored in the temporary; a call to a communication
library is issued to perform the write; and finally, the temgry is deallocated. When possible, the generated code
avoids using unneeded temporary buffers. For example fasaignment performing a comaf ¢ generates code
to move the data directly from the source into the destimatla generalcaf ¢ generates blocking communication
operations. However, user directives [DCMCO04] enatdé c to exploit non-blocking communication.

To support point-to-point synchronization in CAEy(nc_noti fy andsync_wai t), we collaborated with the
developers of ARMCI on the design of suitalalenti _not i f y andar nti _wai t primitives. ARMCI ensures that
if a blocking or non-blockind?UT to a remote process image is followed by a notify to the samegss image,
then the destination image receives the notification aftePUT operation has completed. While ARMCI supports
non-blocking communication, on some architectures, th@eémentation ofir nti _not i fy itself is blocking. This
limits the overlap of communication and computation if a Cgegrammer writes a non-blocking write to a remote
co-array and notifies the destination process image imrteddihereafter. To maximize the overlap of communication
and computationrsync_not i f y should have a non-blocking implementation as well. We atigelg collaborating
with the ARMCI developers regarding non-blocking notifioas.

caf c is available as open-source. It supports COMMON and SAVErtays of primitive types, passing of
co-array arguments, co-arrays with multiple co-dimensjamo-array communication using array sections, the CAF
synchronization primitives and most of the CAF intrinsimétions. The following features of CAF are currently
not supported: user-defined type co-arrays, allocatableri@ys, allocatable co-array components, triplets in co-
dimensions, parallel I/O and some Co-array Fortran inifisnctions. Ongoing work is aimed at removing these
limitations.caf ¢ compiles natively and runs on the following architectuisntium clusters with Ethernet intercon-
nect, Itanium2 clusters with Myrinet or Quadrics intercean Alpha clusters with Quadrics interconnect, SGI Origin
2000 and SGlI Altix 3000.

Previous studies [CDEMC03, DCMC04, DCMCCO04] have shown #v&n without automatic communication
optimizations we are able to obtain performance and sdijabomparable to that of hand-coded MPI applications
for the NAS benchmarks on a range of cluster and hardwaredhaemory systems.

4 Comparing One-sided and Two-sided Communication

The goal of our study was to experiment and compare one-sidedwo-sided communication schemes on of a code
with a sophisticated parallelization. For this purposeselected the ASCI Sweep3D [Acc95] application.

4.1 Sweep3D

Sweep3D solves a one-group time-independent discreteaiedi (Sn) 3D Cartesian (XYZ) geometry neutron trans-
port problem. The XYZ geometry is represented by an IJK lalfjaectangular grid of cells. The angular dependence
is handled by discrete angles with a spherical harmoniasitrent for the scattering source. The solution involves two
steps: the streaming operator is solved by sweeps for egth and the scattering operator is solved iteratively.

Sweep3D exploits wavefront parallelism. It uses 2D a spdtianain decomposition onto a 2D processor array
in the | and J directions. For efficient parallelization, p8D is coded to pipeline blocks of MK k-planes and
MMI angles through this 2D processor array. Thus, the wawvefexploits parallelism in both |- and J-directions
simultaneously. A more complete description of Sweep3Dheafound elsewhere [Acc95]. Figure 1 shows a piece
of pseudocode representing a high-level view of the Swed@E3bel.

To investigate the impact of different CAF coding styles, wplemented three CAF versions of the Sweep3D:
Sweep3D-CAF, Sweep3D-CAF-pa, and Sweep3D-CAF-mb. We aoedptheir performance to that of the MPI

g=1,8 ! octants
o 1, mmo ! angle pipelining |oop

1, kb ! k-plane pipelining | oop
recv e/winto Phiib ! recv block I-inflows
recv n/s into Phijb ! recv block J-inflows

! heavy conputation with use/update Phiib and Phijb

send e/w Phiib ! send block I|-outflows
send n/s Phijb ! send block J-outflows
enddo
enddo
enddo

Figure 1: Sweep3D kernel pseudocode.

version. The difference among the CAF versions is in the camiaation implementation, while the local computation
is similar.

Sweep3D-CAF was developed from the original MPI code byatédd itsPhi i b andPhi j b arrays as co-arrays
and using blockind?UT to communicate them “in-place”. For the I-direction comnuation, the code is presented
in Figure 2. For the J-direction communication, the codenslar except that the process image communicates the
Phi j b array with its J-predecessor and with its J-successor.

if (receiving froml-predecesor) then
! notify the I-pred that the local Phiib buffer is ready to accept new data

call sync.notify(l-pred)
! wait for the new data to arrive fromthe |-predecessor

call sync_wait(I-pred)
endi f

i.'heavy conputation with use/update Phiib and Phijb

if (sending to |-successor) then
! wait for the I-succ notification that its Phiib is ready to accept new data

call sync._wait(I-succ)
! transfer the data to the I-successor (contiguous bl ocking PUT)
Phiib(:,:,:)[1-succ] = Phiib(:,:,:)
! notify the I-succ that the new data has been sent
call sync.notify(l-succ)
endi f

Figure 2: Sweep3D-CAF kernel pseudocode.

The Sweep3D-CAF communication is very similar to that of Ml version. The data movement statement
— assignment td&*hi i b — communicates the same data as doesséwed/ r ecv pair of the MPI version. The
sync_noti fy andsync_wai t provide synchronization analogous to that induced by an 84R1d/ r ecv pair.

For Sweep3D-CAF, there is no data copy fr@m i b or Phi j b into an auxiliary communication buffer; the data is
communicated directly “in-place”. In contrast, the MPIsien might use extra data copies to/from a communication
buffer to move the data.

Sweep3D-CAF-pa is similar to the Sweep3D-CAF versionRhiti b andPhi j b arrays are not communicated
“in-place”. They are copied into auxiliary co-arrays on gwmurce, then, the auxiliary co-arrays are communicated
using a blockind?UT to the destination, finally, at the destination, the comroatdd data is copied from the auxiliary
co-arrays into thé>hi i b andPhi j b. The synchronization remains the same. In essence, théfonesimulates
possible data copies that the MPI version might execute.

Sweep3D-CAF-mb tries to overl&Ts with computation on the successor and to provide asyngliotgrance.

It uses additional storage, namely, three instanc@&hof b andPhi j b to overlap communication with computation.

In the wavefront steady state, one instanc®lof i b can be used to receive the data from the I-predecessor; at the
same time another instance can be used to perform the loggdutation, while the third instance can be used to
communicate the data to the I-successor (three-buffemsepeFor shared-memory architectures without hardware
support for asynchronous data transfers, a two-bufferrseh& which one buffer is used for local computation and
the other is used for BUT performed by a predecessor, is likely to yield the best perémce.Phi i b has an extra
high-order dimension to manage the instances in the cirtuitier fashion to avoid unnecessary copies. Similarly,
three instances dPhi j b can be used to provide for communication and computatiomlaydor the wavefront
parallelism in the J-direction. Note that more storage camnded; for example, three instances to receive data from
the I-predecessor, and two instances to send the data testieeéssor. The simplified pseudocode for three-buffer
scheme is given in Figure 3. Our implementation is more ge@erd supports an arbitrary number of buffers holding
incoming data from the predecessor and outgoing data tautmessor. On the platforms where non-blockifigi's

and notifications are supported, the code uses non-bloddamgmunication directives proposed in [DCMCO04] to
overlap communication with local computation, otherwistydlockingPUTs are used.

advance the phiibwk.idx index (index rotation to avoid extra menory copies)
if (receiving froml-predecesor) then
! wait for the data fromthe |-predecessor
call sync_wait(I-pred)
I notify the |-predecessor that we have a buffer available to receive new data
call sync_notify(l-pred)
endi f

i . heavy conputation with use/update Phiib and Phijb

if (sending to |-successor) then
finalize locally the previous PUT to the |-succ

start the region of non-blocking communication wth index phiib_w k. dx

! transmit the new data to the |-succ using non-blocking contiguous PUT (due to
deconposition symetry, phiibwk.idx is the same locally and on the |-succ)

Phiib(:,:,:,phiibwk.dx)[l-succ] = Phiib(:,:,:,phiibow k. dx)

! notify the |-successor that nore data is available

call sync.notify(l-succ)

stop the regi on of non-bl ocking communication with index phiibow k. dx
endi f

Figure 3: Sweep3D-CAF-mb kernel pseudocode.

4.2 Blocking Communication Throughput Microbenchmark

To explain some of the Sweep3D performance results we aksmtent a microbenchmark that measures blocking
communication throughput.

Data movement is an important component of parallel apjdina and often a key factor in application perfor-
mance. To evaluate the capabilities of CAF programs for kilgz communication we have devised a producer-
consumer microbenchmark and evaluated several versio®$; ®AF and ARMCI. Such a benchmark enables us
to evaluate the performance of the communication libragdu®r blocking communication on a particular target
platform.

The core of the MPI version is presented in figures 4 (a) andiflthe microbechmark processmgl, the sender
(figure 4(a)), communicates ZE double precision numbers to processg2, the receiver (figure 4(b)). The MPI
blocking communication call§/Pl _send andiVPI _r ecv provide both data movement and synchronization between
the sender and the receiver. The communication event ienpeetd NRUNS times; to overcome limitations in the
system clock precision, the value we choseNBIUNS was 500000. We measure throughput by dividing the total size

of the data sent to the execution time and is measured in MBtsE
_ SIZExNRUNSx8%x10e—6
throughput - execution_time

To compose a CAF version with the same semantics, we explgpecify data movement and synchronization

separately. The destination process imagey2, must notify the source process imagergl, that the co-array
data to be written is no longer being used by computation atigus available to be overwritten. After tR&JT, the
source process image usepgnc_not i fy to signal the destination that the data has arrived. IssBififs without
the synchronization is, in general, not realistic and woekllt in race conditions. The code for the source and the
destination processes is presented in figures 4 (c) and (d).

Finally, we have written a version of the blockifT microbenchmark using ARMCI calls directly, to evaluate
the overhead introduced by the CAF runtime layer for commation events. The code for the ARMCI version is
similar to the CAF code and is shown in figures 4 (e) and (f).

doubl e precision a(N1)
do i =1, 500000
call npi_send(al(1l), size,
MPI _DOUBLE_PRECI SI ON, i ng2,
99, MPI _COMMWORLD, ierr)
end do

(a) Source, MPI
doubl e precision a(N1)[0:*]

do i =1, 500000
call sync._wait (ing2)
a(1: Sl ZE)[ing2] =a(1: SI ZE)
call sync_notify(ing2)
end do

(c) Source, CAF
doubl e precisi on addr essA(NUM.I MAGES)

do i =1, 500000
call arnci wait(ing2)
call ARMCI _put (addressA[ingl],
addressA[i ng2],
SIZE, ing2)
call arnci notify(ing2)
end do

(e) Source, ARMCI

doubl e precision a(N1)
do i =1, 500000
call npi_recv(al(1l), size,
MPI _DOUBLE_PREC! SI ON, i ngl,
99, MPI _COMMORLD, ierr)
end do

(b) Destination, MPI
doubl e precision a(N1)[0:*]

do i =1, 500000
call sync.notify(ingl)
call sync.wait(ingl)
end do

(d) Destination, CAF
doubl e precision addr essA(NUMI MAGES)

do i =1, 500000
call arnci notify(ingl)
call arnti_wait(ingl)
end do

(f) Destination, ARMCI

Figure 4: MPI, CAF and ARMCI versions of the blockiRT microbenchmark.

5 Experiments

We evaluated the performance of our CAF and MPI variants a&ep8D on four platforms.

The first platform we used was the Alpha cluster at the Pitgth&upercomputing Center. Each node is an SMP
with four 1GHz processors and 4GB of memory. The operatistesy is OSF1 Tru64 v5.1A. The cluster nodes are
connected with Quadrics QSNet (Elan3). The back-end Fodoanpiler used was Compag Fortran V5.5.

The second platform used was a cluster of 2000 HP Long’s Pealk@PU workstations at the Pacific Northwest
National Laboratory. The nodes are connected with QuadyBhlet 1l (Elan 4). Each node contains two 1.5GHz
Itanium2 processors with 32KB/256KB/6MB L1/L2/L3 cachedadGB of RAM. The operating system is Red Hat
Linux (kernel version 2.4.20). The back-end compiler isltitel Fortran compiler version 8.0.

The third platform we used for experiments was a cluster oH®2zx6000 workstations interconnected with
Myrinet 2000. Each workstation node contains two 900MHellitenium 2 processors with 32KB/256KB/1.5MB of

doubl e precision al(N1)[O0:*] doubl e precision al(N1)[O0:*]

doubl e precision a2(N1)[0: *] doubl e precision a2(N1)[0:*]
do i =1, 500000/ 2 call sync.notify(ingl)
call sync_wait (ing2) call synconotify(ingl)
al(1: Sl ZE)[i ng2] =al(1: Sl ZE) do i=1, 500000/2
call sync_notify(ing2) call sync.wait(ingl)
call sync_wait (ing2) call sync.notify(ingl)
a2(1: Sl ZE)[i ng2] =a2(1: SI ZE) call sync.wait(ingl)
call sync.notify(ing2) call synconotify(ingl)
end do end do

call sync_wait (ingl)
call sync.wait(ingl)

(a) Source, CAF (b) Destination, CAF

Figure 5: CAF version of the two-buff@UT microbenchmarks.

L1/L2/L3 cache, 4-8GB of RAM, and the HP zx1 chipset. Eachensdrunning the Linux operating system (kernel
version 2.4.18-e plus patches). We used the Intel Fortrampder version 8.0 for Itanium as our Fortran 90 back-end
compiler.

The fourth platform is an SGI Altix 3000, with 128 ItaniumBGHz processors with 6MB L3 cache, and 128 GB
RAM, running the Linux64 OS with the 2.4.21 kernel and theslftortran compiler version 8.0.

For the Sweep3D benchmark, we compare the parallel effigiehthe MPI and CAF versions. We compute
parallel efficiency as follows. For each parallelizatianthe efficiency metric is computed "’Rtff(—ap)- In this

equationt; is the execution time of the sequential versidhis the number of processots(P, p) is the time for the
parallel execution o processors using parallelizatipn Using this metric, perfect speedup would yield efficiency
1.0 for each processor configuration. We use efficiency ratlae speedup or execution time as our comparison metric
because it enables us to accurately gauge the relativerpenfice of multiple benchmark implementations across the
entire range of processor counts. We present results for sizesO%685 150x150x150 and 300x300x300, with the
total memory requirements of 16MB, 434MB and 3463MB respelt .

For the blockingPUT microbenchmarks we present the throughput measured inéd8isl (0 B/second), for
message sizes ranging from 512B to 128KB, which covers tsage sizes encountered in the Sweep3D experiments.

The results for the Alpha cluster with Quadrics intercortra@e shown in figures 6, 7 and 8. The results for the
Itanium?2 cluster connected with Quadrics are presentedjirds 9, 10 and 11. Figures 12, 13 and 14 displays the
results for the Itanium2 cluster with Myrinet 2000 interoect. Finally, the results on the SGI Altix 3000 machine
are shown in figures 15, 16 and 17. The result for the micrdimack on the various architecture are presented in
figures 18, 19, 20 and 21.

Our results show that for Sweep3D we achieve comparablalstipl to the MPI version on the cluster architec-
tures and outperform it by up to 10% on the hardware sharadanemachine.

On the Alpha cluster, the Sweep3D-CAF-mb version slightliperforms the MPI version for the 50x50x50 prob-
lem size, while MPI outperforms Sweep3D-CAF-mb for the 1B00x150 problem size, and they perform comparably
for the 300x300x300 problem size. The Sweep3D-CAF-mb @sdixétter latency tolerance; by using multiple com-
munication buffers, it reduces the wait time of the souraepss image for a buffer to become available féHA
to the destination process image. Currently, tfod i fy is implemented in ARMCI with a blockin®UT. While
we can overlap th@UT to the successor with tHeUT from the predecessor (both being performed as independent
RDMA by the NIC, as described in section 2.2), we cannot agethePUT with computation on the source process
image. The blocking communication microbenchmark showasttie CAF translation doesn’t introduce a significant
overhead over the ARMCI library, but the ARMCI library itbglelds a lower throughput than the native MPI imple-
mentation. As expected, the one-buffer versions of Sweep3Bweep3D-CAF and Sweep3D-CAF-pa — perform
worse than the multiple-buffer version Sweep3D-CAF-mltsoAlISweep3D-CAF-pa performs expectedly worse than

-

T
=6~ MPI Alpha+Quadrics
=0~ CAF Alpha+Quadrics
CAF-pa Alpha+Quadrics H
& == CAF-mb Alpha+Quadrics

o
©
T

o
©
T

e
3
T

=}
=)
T

=}
5
T

I
IS
T

=}
w
T

=]
N
T

Efficiency: Speedup/(Number of processors)

o
[
T

I

12 24 32 36 48 64 80
Number of Processors

o
[
o

Figure 6: Results for Sweep3D size 50x50x50 on an Alpha&twgith a Quadrics Elan3 interconnect.

I
N

[
T

=}
©
T

=}
©
T

=}
~
T

=}
o
T

=}
15
T

I
'S
T

=}
w
T

=}
N
T

=@~ MPI Alpha+Quadrics
L| =0= CAF Alpha+Quadrics
CAF-pa Alpha+Quadrics
=¥~ CAF-mb Alpha+Quadrics
T T T

Efficiency: Speedup/(Number of processors)

o
o

L L L L
6 12 24 32 36 48 64 80
Number of Processors

o
-

Figure 7: Results for Sweep3D size 150x150x150 on an Alpirstedt with a Quadrics Elan3 interconnect.

Sweep3D-CAF because of extra data copies.

On the Itanium2 cluster with Quadrics Elan4 interconned®] Mightly otperforms Sweep3D-CAF-pa and Sweep3D-
CAF-mb versions for the problem sizes 50x50x50, and achieweparable performance for the 150x150x150 and
300x300x300 problem size. A surprising finding was that theé&p3D-CAF version performs 20-30% worse com-
pared to the other versions. Our investigation lead to telosion that the performance difference is due to inef-
ficient code generated by the Intel Fortran Compiler. Wealisped that the Sweep3D-CAF has 33% more L1 and
L2 instruction cache misses than its MPI counterpart, wéiperiencing comparable number of data cache misses.
Because Sweep3D employs wave-front parallelelism, batal loode and communication efficiency are very impor-
tant to achieving overall good performance. Our initialpga®n was that the performance difference is due to the
Phi i b andPhi j b buffers being invalidated in the CPU cache because of the RElsta transfers. These arrays
are used in the local computation extensively, so we inddaep nests that access tRai i b andPhi j b in the

10

s
w

N
N
T

I
N
T

[
T

=}
©
T

=}
©
T

=}
~
T

=}
)
T

o
o
T

I

I
IS
T

I

=3

w
T

I

I
N
I

=6~ MPI Alpha+Quadrics
=0~ CAF Alpha+Quadrics
CAF-pa Alpha+Quadrics
== CAF-mb Alpha+Quadrics
T T T

Efficiency: Speedup/(Number of processors)

o
o
i

1 1 1 1
6 12 24 32 36 48 64 80

Number of Processors

o
[

Figure 8: Results for Sweep3D size 300x300x300 on an Alpirstet with a Quadrics Elan3 interconnect.

code right after the data is communicated, thus warming eg#che. That change fixed the performance problem.
However, moving the loop nest in a separate procedure argingd2hi i b andPhi j b as parameters again lead to
performance degradation. Inserting loop nests that aecessll temporary array, not used in the computation, again
improved the performance. At this point we measured thelunogbn and data cache misses and saw that the per-
formance degradation was caused by the extra instructicimeaaisses. This explains counterintuitive results for the
Sweep3D-CAF-pa version that performs extra data copyiniievethieving better performance than the Sweep3D-
CAF version. We plan to contact Intel to investigate thisnimitive behavior of code generated by their Fortran
compiler. The Sweep3D-CAF-fix version is derived from SwaiefCAF by adding the “fixup” code; similarly, the
Sweep3D-CAF-mb-fix is derived from the Sweep3D-CAF-mb iersThe Sweep3D-CAF-mb-fix version achieves
performance comparable to the MPI version for the 50x50x60Ipm size, and outperforms it by up 9% to for the

o
o

T

=0~ MPI Itanium2+Quadrics

=0~ CAF Itanium2+Quadrics
CAF-fix Itanium2+Quadrics

=©- CAF-pa Itanium2+Quadrics

=7~ CAF-mb Itanium2+Quadrics

=#e= CAF-mb-fix Itanium2+Quadrics

=}
&
T

I
IS
T

=}
w
T

o
N
T

Efficiency: Speedup/(Number of processors)

16 12 24 32 36 48 64 80
Number of Processors

Figure 9: Results for Sweep3D size 50x50x50 on an Itanium&et with a Quadrics Elan4 interconnect.

11

-

T
=0~ MPI Itanium2+Quadrics
=0~ CAF Itanium2+Quadrics

CAF-fix Itanium2+Quadrics
=©- CAF-pa Itanium2+Quadrics

CAF-mb Itanium2+Quadrics

CAF-mb-fix Itanium2+Quadrics

o
©
T

o
©
T

e
3
T

=}
=)
T

=}
5
T

I
IS
T

=}
w
T

Efficiency: Speedup/(Number of processors)

o
[
T

12 24 32 36 48 64 80
Number of Processors

o
[
o

Figure 10: Results for Sweep3D size 150x150x150 on an IaRicluster with a Quadrics Elan4 interconnect.

1.2 T
=0~ MPI Itanium2+Quadrics
—~11F =0~ CAF ltanium2+Quadrics L
(7) CAF-fix Itanium2+Quadrics
S -©- CAF-pa Itanium2+Quadrics
(2 =7~ CAF-mb Itanium2+Quadrics H
2 =#= CAF-mb-fix Itanium2+Quadrics
3]
o 09
=
a
—
5 0.8
o *o
[«8]
Q0.7+
£
S
206 .
= T~
o V=~ <
Sosk B i
B e
@ il 4
3]
Q.04 B
n
o3k i
203
c
2
5 0.2+ B
£
Woql 4
0 L L L L L L L
1 6 12 24 32 36 48 64 80

Number of Processors

Figure 11: Results for Sweep3D size 300x300x300 on an lwaRiciuster with a Quadrics Elan4 interconnect.

150x150x150 and 300x300x300 problem size. By analyzingrlreobenchmark results, we have discovered that
even though the throughput of the ARMCI version is close & df the MPI version, the code generated by the CAF
compiler introduces an overhead over the ARMCI versionoAtee multiple-buffer version of the microbenchmark
gains over the one-buffer version due to better asynchmeyance.

On the Itanium2 cluster with Myrinet 2000 interconnect, el version perfoms comparably to the Sweep3D-
CAF-mb versions for the 50x50x50 problem size. The SweefZ2B-mb version exceeds MPI performance by up
to 12% for the 150x150x150 and by up to 9% for 300x300x300 lgraksize. These excellent results are due to
high degree of communication and computation overlap ptessbefause the ARMCI library implements full support
for non-blockingPUTs andnot i f y on the Myrinet 2000 interconnet. The microbenchmark resslitow that the
multiple buffer version with non-blocking communicationtperforms the other CAF versions because it allows good
asynchrony tolerance and pipelining of communication &eWe noticed that MPI achieves superior performance

12

0.6

T
=0~ MPI Itanium2+Myrinet
=0~ CAF Itanium2+Myrinet
CAF-fix Itanium2+Myrinet
=~ CAF-pa Itanium2+Myrinet
CAF-mb Itanium2+Myrinet
CAF-mb-fix Itanium2+Myrinet

o
w”
T

I
IS
T

=}
w
T

=}
N
T

Efficiency: Speedup/(Number of processors)

L L L
1 6 12 24 32 36 48 64
Number of Processors

Figure 12: Results for Sweep3D size 50x50x50 on an Itanidoe2er with a Myrinet 2000 interconnect.

0.7

T

=0~ MPI Itanium2+Myrinet

=0~ CAF Itanium2+Myrinet
CAF—fix Itanium2+Myrinet

=0~ CAF-pa Itanium2+Myrinet

== CAF-mb Itanium2+Myrinet

== CAF-mb~fix Itanium2+Myrinet

=}
o
T

o o I o
[N} w IS n
T T T T

Efficiency: Speedup/(Number of processors)

L L L
1 6 12 24 32 36 48 64
Number of Processors

Figure 13: Results for Sweep3D size 150x150x150 on an lwaRiciuster with a Myrinet 2000 interconnect.

for small message sizes (up to 16KB); it is our understanttingthe Myrinet-based implementation of MPI buffers
small message sizes on the sender, thus, in reality, selzdigey messages limited by MPI's internal buffer size.

To summarize our findings for cluster-based architectihese are three major sources of inefficiencies for CAF
codes compared to the equivalent MPI codes. First, soarsetrce translation and CAF runtime library add more
instructions to the program causing some, usually mineffiziency. Second, there is a communication performance
difference between ARMCI and native MPI implementations: the blocking communication patterns commonly
used in Sweep3D, the ARMCI version of our microbenchmarkguers slightly worse than the MPI version. Third,
ARMCI does not have full support for non-blockifyJTs andnot i f y via a blockingPUT for the Quadrics inter-
connects, precluding potential overlap of computation@rdmunication. We are working closely with the ARMCI
developers to provide a non-blocking implementationofi fy.

On the SGI Altix 3000 machine, the Sweep3D-CAF-mb and SwBePAF-pa versions perform slightly worse

13

I
S
T

[
T

=}
©
T

=}
©
T

o
3
T

=}
)
T

o
o
T

I

I
S
T

I

o
w
I

=0~ MPI Itanium2+Myrinet
H =0= CAF Itanium2+Myrinet b
CAF—fix Itanium2+Myrinet
=0~ CAF-pa Itanium2+Myrinet i
== CAF-mb Itanium2+Myrinet
== CAF-mb-fix Itanium2+Myrinet
T T T

L L
6 12 24 32 36 48 64
Number of Processors

Efficiency: Speedup/(Number of processors)

o
o

o
[

Figure 14: Results for Sweep3D size 300x300x300 on an Itadiciuster with a Myrinet 2000 interconnect.

than the Sweep3D version for 50x50x50 problem size, slightitperform the Sweep3D version for 150x150x150
problem size, and consistently outperform the Sweep3Dorfer 300x300x300 problem size by up to 10%. On
this architecture, due to lack of hardware support for effithon-blocking communication, ARMCI implements non-
blocking communication by using memory copy subroutindsictvis equivalent to blocking communication. For
this reason, the execution times of Sweep3D-CAF-pa and S3@€AF-mb are almost indistinguishable. Although
ARMCI performs direct data movement, MPI may perform one arenextra copies. The Sweep3D-CAF-mb-fix
version demonstrates even superior performance due toeffarient local computation. SGI recommended configu-
ration of the MPI library did not improve the performance @feep3D.

The SGI Altix provides hardware cache consistency with editte granularity. For this reason, we measured two
versions of the microbenchmark: one that repeatedly seadsflom the same memory location on the source to the

o
~

. :
-e- MPI SGI Altix 3000
-0~ CAF SGI Altix 3000

CAF-fix SGI Altix 3000
-©- CAF-pa SGI Altix 3000 ||
=7~ CAF-mb SGI Altix 3000
== CAF-mb-fix SGI Altix 3000

=}
o
T

° o ° °
N w B (3]
T T T T
1
1
1
@l
2

Efficiency: Speedup/(Number of processors)

L L L
1 6 12 24 32 36 48
Number of Processors

Figure 15: Results for Sweep3D size 50x50x50 on an SGI AR

14

-

o
©
T

o
©
T

e
3
T

=}
=)
T

=}
5
T

I
IS
T

I

o
w
T

I

o
N

H =6~ MPI SGI Altix 3000 B
=0~ CAF SGlI Altix 3000
CAF-fix SGI Altix 3000
H =@~ CAF-pa SGI Altix 3000 B
== CAF-mb SGI Altix 3000
k- CAF-mb~fix SGI Altix 3000
T T

Efficiency: Speedup/(Number of processors)

o
o

L L L
6 12 24 32 36 48
Number of Processors

o
[

Figure 16: Results for Sweep3D size 150x150x150 on an S® 3000.

g
kS
T
I

-
w
T

-
N
T

I
N
T

-
T

=}
©
T

)
T

©° 9
N
T

o o
(5] (2]
T T
I Il

<
IS
T
I

=}
w
T

-6~ MPI SGI Altix 3000 b

=0~ CAF SGI Altix 3000

CAF-fix SGI Altix 3000 B

=0~ CAF-pa SGlI Altix 3000

== CAF-mb SGI Altix 3000 B
~#- CAF-mb-fix SGI Altix 3000

T T L

L L
6 12 24 32 36 48
Number of Processors

Efficiency: Speedup/(Number of processors)

o
o
i

o
-

Figure 17: Results for Sweep3D size 300x300x300 on an S® 3000.

same memory location on the destination (thus keeping #mstnitted data in cache), and the other that at every step
transmits data from a different memory address, so thatakeemeeds to be brought in cache for every transmission.
The first version is denoted “warm cache” in figure 21, while $kecond is denoted “cold cache”. For the warm cache
version, the results show that while the throughput for tiié&-@nd ARMCI versions scales with the message size,
achieving values as high as 7000-8000 MB/second, the thmugf the MPI version is limited to 600MB/s. For the
cold cache version, the CAF versions outperform the MPligarby a factor of two for messages smaller than 4KB
and by 30% for messages larger than 4KB. For the Sweep3Dcafiph, we expect most of transmitted data to be in
cache prior to the transmission, so the “warm cache” veiisiarcloser approximation of the communication behavior
of Sweep3D, which is one of the reasons the CAF versions dotpethe MPI version on the SGI Altix.

15

250

225+ -

200 U3

-
g}
a

Throughput (MB/second)
[
&

=0~ MPI Alpha+Quadrics
CAF Alpha+Quadrics m
=B~ CAF-MB Alpha+Quadrics
7= ARMCI Alpha+Quadrics
T T

o
I3
[
N

4 8 16 32 64 128
Message Size (KB)

Figure 18: Results for blocking put microbenchmark on arhalpluster with a Quadrics Elan3 interconnect.

850

T T
-0~ MPI Itanium2+Quadrics
800 CAF Itanium2+Quadrics -4
=8~ CAF-MB Itanium2+Quadrics
7= ARMCI Itanium2+Quadrics -

<

700 -

N @ @

o =} =}

=) I=) =)
T T T

Throughput (MB/second)
g
T
~

200

100

L L
4 8 16 32 64 128
Message Size (KB)

Figure 19: Results for the blocking put microbenchmarksmittanium?2 cluster with a Quadrics Elan4 interconnect.

6 Conclusions

In the quest to increase the productivity of parallel aglan developers, programming models based on one-sided
communication have emerged as appealing alternatives toTd®etter understand the implications of such models
on program performance, we developed and studied sever@ali@plementations of Sweep3D. For each program
variant, we describe its implementation strategy and aealg performance on three cluster-based architecturks an
a hardware shared memory machine. Our results show thatARevE€rsions achieve performance comparable to
that of LANL's original MPI version on the cluster-based faitectures and outperform the MPI version by up to
10% on the SGI Altix 3000. For the cluster-based architestwe identified three major sources inefficiency in our
compiler-generated code for CAF; we plan to address eadfein¢arest future. On the SGI Altix 3000 architecture,
sophisticated CAF versions outperform the MPI version oe&wD because they are able to effectively exploit
hardware support for direct data transfers.

16

250

225

200

-
g}
a

Throughput (MB/second)
[
&

=0~ MPI Itanium2+Myrinet2000

z CAF Itanium2+Myrinet2000

51 =8 CAF-MB Itanium2+Myrinet2000 [
9 == CAF-NB Itanium2+Myrinet2000
0

0.

7= ARMCI Itanium2+Myrinet2000
1 T T

4 8 16 32 64 128
Message Size (KB)

Figure 20: Results for the blocking put microbenchmarksmitanium?2 cluster with a Myrinet 2000 interconnect.

9000

T T T

=0~ MPI warm cache SGI Altix 3000

CAF warm cache SGI Altix 3000 .-
8000 H =8~ CAF-MB warm cache SGI Altix 3000 - .
== ARMCI warm cache SGI Altix 3000 P ﬁg' --
=9~ MPI cold cache SGI Altix 3000 -

CAF cold cache SGI Altix 3000
7000 | =8 CAF-MB cold cache SGI Altix 3000 a,
=~ ARMCI cold cache SGI Altix 3000 it 4

6000 . 4 -

P 4
(=] =]
(<] (<]
=] =]
T T
~
~ ‘
\
~
1 1

Throughput (MB/second)
w
E
T
~
~
Il

2000~ id v

1000~

4 8 16 32 64 128
Message Size (KB)

Figure 21: Results for the blocking put microbenchmarksm&&I Altix 3000.

In our experience, CAF's one-sided communication modehsser to use than MPI for writing simple programs.
However, at present, developing carefully-tuned paralheles in CAF seems as difficult as it is in MPI. While MPI
manages message buffering transparently, in CAF programfis-version storage for communicated arrays and as-
sociated synchronization must currently be managed ateaade level. To increase programmer productivity, we
are planning to explore compiler support for transparemiénaging multi-version storage of communicated arrays;
this should improve asynchrony tolerance of CAF programigew in a natural style by enabling better overlap of
communication and computation.

17

7 Acknowledgements

We thank J. Nieplocha and V. Tipparaju for collaborating loa tefinement and tuning of ARMCI. We thank F. Zhao
for her work on the Open64/SL Fortran front-end. We thank Baarria-Miranda for his insightful discussions on

Sweep3D.

References

[Acc95] Accelerated Strategic Computing Initiative. Th&8@I Sweep3D Benchmark Codét t p: / / www.
1 nl.gov/asci _benchmarks/asci/limted/ sweep3d/asci _sweep3d. h% nml ,1995.

[ANS98] ANSI. Myrinet-on-VME Protocol Specification (ANSI/VITA 26-1998merican National Standard
Institute, 1998.

[BHST95] D. Bailey, Tim Harris, William Saphir, Rob van der Wijrara, Alex Woo, and Maurice Yarrow. The
NAS parallel benchmarks 2.0. Technical Report NAS-95-0X5A Ames Research Center, December
1995.

[CDCt99] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and Warren E. Brooks. Introduction to UPC
and language specification. Technical Report CCS-TR-99-I2A Center for Computing Sciences,
May 1999.

[CDEMCO3] Cristian Coarfa, Yuri Dotsenko, Jason Eckhaadigl John Mellor-Crummey. Co-array Fortran Perfor-
mance and Potential: An NPB Experimental StudyPinc. of the 16th Intl. Workshop on Languages
and Compilers for Parallel Computingumber 2958 in LNCS. Springer-Verlag, October 2-4, 2003.

[DCMCO04] Yuri Dotsenko, Cristian Coarfa, and John Mellom@mey. A Multiplatform Co-Array Fortran Com-
piler. In Proceedings of the 13th Intl. Conference of Parallel Arebitires and Compilation Techniques
Antibes Juan-les-Pins, France, September 29 - October& 200

[DCMCCO04] Yuri Dotsenko, Cristian Coarfa, John Mellor-@mmey, and Daniel Chavarria-Miranda. Experiences
with Co-Array Fortran on Hardware Shared Memory Platforim&roceedings of the 17th International
Workshop on Languages and Compilers for Parallel Computiggptember 2004.

[GSNL98] William Gropp, Marc Snir, Bill Nitzberg, and Ewinlgusk. MPI: The Complete Referenc®lIT Press,
second edition, 1998.

[NC99] J. Nieplocha and B. Carpent&RMCI: A Portable Remote Memory Copy Library for Distribaiterray
Libraries and Compiler Run-Time Systemslume 1586 otecture Notes in Computer Scienpages
533-546. Springer-Verlag, 1999.

[NR98a] R. W. Numrich and J. K. Reid. Co-Array Fortran for @léal programming. Technical Report RAL-
TR-1998-060, Rutheford Appleton Laboratory, August 1998.

[NR98Db] R. W. Numrich and J. K. Reid. Co-Array Fortran for el programming. ACM Fortran Forum
17(2):1-31, August 1998.

[NTSP0O2] J. Nieplocha, V. Tipparaju, A. Saify, and D.K. PandProtocols and strategies for optimizing perfor-
mance of remote memory operations on clustersPrivc. Workshop Communication Architecture for
Clusters (CACO02) of IPDPS’QZFt. Lauderdale, Florida, April 2002.

[Ope01] Open64 Developers. Open64 compiler and todis.t p: / / sour cef or ge. net/ proj ect s/
open64, September 2001.

[Ope02] Open64/SL Developers. Open64/SL compiler andstolot t p: // hi persoft.cs.rice. edu/

open64, July 2002.

18

[PcFHT02] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salva@wll, and Eitan Frachtenberg. The Quadrics
network: high performance clustering technololsEE Micro, 22(1):46-57, January-February 2002.

[RSBO3] Craig Rasmussen, Matt Sottile, and Tom Bulatew@dASM language interoperability toolkt t p:
/I sour cef orge. net/ proj ect s/ chasm i nt er op, July 2003.

[Van93] R. F. Van der Wijngaart. Efficient implementationa8-dimensional adi method on the ipsc/860. In
Proceedings of the 1993 ACM/IEEE conference on Supercangppages 102—-111. ACM Press, 1993.

19

