
Co-array Fortran Performance and
Potential: an NPB Experimental Study

Cristian Coarfa Yuri Dotsenko
Jason Lee Eckhardt John Mellor-Crummey

Department of Computer Science
Rice University

Parallel Programming Models

• Goals:
• Expressiveness
• Ease of use
• Performance
• Portability

• Current models:
• OpenMP: difficult to map on distributed memory platforms
• HPF: difficult to obtain high-performance on broad range of

programs
• MPI: de facto standard; hard to program, assumptions about

communication granularity are hard coded

Co-array Fortran – a Sensible Alternative

• Programming model overview
• Co-array Fortran compiler
• Experiments and discussion
• Conclusions

Co-Array Fortran (CAF)
• Explicitly-parallel extension of Fortran 90/95 (Numrich & Reid)
• Global address space SPMD parallel programming model

• one-sided communication

• Simple, two-level model that supports locality management
• local vs. remote memory

• Programmer control over performance critical decisions
• data partitioning
• communication

• Suitable for mapping to a range of parallel architectures
• shared memory, message passing, hybrid, PIM

CAF Programming Model Features
• SPMD process images

• fixed number of images during execution
• images operate asynchronously

• Both private and shared data
• real x(20, 20) a private 20x20 array in each image
• real y(20, 20) [*] a shared 20x20 array in each image

• Simple one-sided shared-memory communication
• x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
• sync_all – a barrier
• sync_team([notify], [wait])

• notify = a vector of process ids to signal
• wait = a vector of process ids to wait for, a subset of notify

• Pointers and (perhaps asymmetric) dynamic allocation
• Parallel I/O

One-sided Communication with Co-Arrays

���������	
�������

���	����������	����
���

�	
�
��
������	
�
��
���������������	��
�

a(10,20) a(10,20) a(10,20)

image 1 image 2 image N

image 1 image 2 image N

Finite Element Example (Numrich)
subroutine assemble(start, prin, ghost, neib, x)
integer :: start(:), prin(:), ghost(:), neib(:), k1, k2, p
real :: x(:) [*]
call sync_all(neib)
do p = 1, size(neib) ! Add contributions from neighbors
k1 = start(p); k2 = start(p+1)-1
x(prin(k1:k2)) = x(prin(k1:k2)) + x(ghost(k1:k2)) [neib(p)]

enddo
call sync_all(neib)
do p = 1, size(neib) ! Update the neighbors
k1 = start(p); k2 = start(p+1)-1
x(ghost(k1:k2)) [neib(p)] = x(prin(k1:k2))

enddo
call synch_all

end subroutine assemble

Proposed CAF Model Refinements

• Initial implementations on Cray T3E and X1 led to
features not suited for distributed memory platforms

• Key problems and solutions
• Restrictive memory fence semantics for procedure calls

�goal: enable programmer to overlap one-sided
communication with procedure calls

• Overly restrictive synchronization primitives
�add unidirectional, point-to-point synchronization

• No collective operations
�add CAF intrinsics for reductions, broadcast, etc.

Co-array Fortran – A Sensible Alternative

• Programming model overview

• Co-array Fortran compiler
• Experiments and discussion
• Conclusions

Portable CAF Compiler
• Compile CAF to Fortran 90 + runtime support library

• source-to-source code generation for wide portability
• expect best performance by leveraging vendor F90 compiler

• Co-arrays
• represent co-array data using F90 pointers
• allocate storage with dope vector initialization outside F90
• access co-array data through pointer dereference

• Porting to a new compiler / architecture
• synthesize compatible dope vectors for co-array storage:

CHASM library (LANL)
• tailor communication to architecture

• today: ARMCI (PNNL)
• future: compiler and tailored communication library

CAF Compiler Status
• Near production-quality F90 front end from Open64
• Working prototype for CAF core features

• allocate co-arrays using static constructor-like strategy
• co-array access

• access remote data using ARMCI get/put
• access process local data using load/store

• co-array parameter passing
• sync_all, sync_team, sync_wait, sync_notify synchronization
• multi-dimensional array section operations

• Co-array communication inserted around statements
with co-array accesses

• Currently no communication optimizations

Co-array Fortran – A Sensible Alternative

• Programming model overview
• Co-array Fortran compiler

• Experiments and Discussion
• Conclusions

Platform

• 96 HP zx6000 workstations
• dual 900Mhz Itanium2 32KB/256KB/1.5MB L1/L2/L3 cache
• 4GB ram

• Myrinet 2000 interconnect
• Red Hat Linux, 2.4.20 kernel plus patches
• Intel Fortran Compiler v7.1
• ARMCI 1.1-beta
• MPICH-GM 1.2.5..10

NAS Benchmarks 2.3

• Benchmarks by NASA:
• Regular, dense-matrix codes: MG, BT, SP
• Irregular codes: CG
• 2-3K lines each (Fortran 77)
• Widely used to test parallel compiler performance

• NAS Versions:
• NPB2.3b2 : Hand-coded MPI
• NPB2.3-serial : Serial code extracted from MPI version
• NPB2.3-CAF: CAF implementation, based on the MPI version

Lessons
• communication aggregation and vectorization were

crucial for high performance
• memory layout of communication buffers, co-arrays and

common block/save arrays might require thorough
analysis and optimization

Lessons
• Replacing barriers with point-to-point synchronization

boosted performance dramatically
• Converting gets into puts also improved performance

Lesson
• Tradeoff between buffer size and amount of necessary

synchronization: more buffer storage leads to less
synchronization

Lesson
• Communication/computation overlap is important for

performance
• not possible with current CAF memory fence semantics

Experiments Summary

• On cluster-based architectures, to achieve best
performance with CAF, a user or compiler must
• Vectorize (and perhaps aggregate) communication
• Reduce synchronization strength

• replace all-to-all with point-to-point where sensible
• Convert gets into puts where gets are not a h/w primitive
• Consider memory layout conflicts: co-array vs. regular data
• Overlap communication with computation

• CAF language enables many of these to be performed
manually at the source level

• Plan to automate optimizations, but compiler might
need user hints

Conclusions
• CAF performance is comparable to highly tuned hand-coded MPI

• even without compiler-based communication optimizations!

• CAF programming model enables optimization at the source level
• communication vectorization
• synchronization strength reduction
� achieve performance today rather than waiting for tomorrow’s compilers

• CAF is amenable to compiler analysis and optimization
• significant communication optimization is feasible, unlike for MPI
• optimizing compilers will help a wider range of programs achieve high

performance
• applications can be tailored to fully exploit architectural characteristics

• e.g., shared memory vs. distributed memory vs. hybrid

