
Experiences with Co-Array Fortran on Hardware
Shared Memory Platforms?

Yuri Dotsenko, Cristian Coarfa, John Mellor-Crummey, and Daniel Chavarrı́a-Miranda

Rice University, Houston TX 77005, USA

Abstract. When performing source-to-source compilation of Co-arrayFortran
(CAF) programs into SPMD Fortran 90 codes for shared-memorymultiproces-
sors, there are several ways of representing and manipulating data at the For-
tran 90 language level. We describe a set of implementation alternatives and
evaluate their performance implications for CAF variants of the STREAM, Ran-
dom Access, Spark98 and NAS MG & SP benchmarks. We compare theperfor-
mance of library-based implementations of one-sided communication with fine-
grain communication that accesses remote data using load and store operations.
Our experiments show that using application-level loads and stores for fine-grain
communication can improve performance by as much as a factorof 24; however,
codes requiring only coarse-grain communication can achieve better performance
by using an architecture’s tunedmemcpy for bulk data movement.

1 Introduction

Co-array Fortran (CAF) [1] has been proposed as a practical parallel programming
model for high-performance parallel systems. CAF is a global address space model for
single-program-multiple-data (SPMD) parallel programming that consists of a small set
of extensions to Fortran 90. To explore the potential of thisprogramming model, we are
building cafc—a multiplatform compiler for CAF. Our goal forcafc is to achieve
performance transparency, namely, to deliver the full power of the hardware platform
to the application on a wide range of parallel systems.

In this paper, we investigate how to generate efficient code for microprocessor-
based scalable shared-memory multiprocessors with non-uniform shared memory ac-
cess (NUMA). Such machines are organized as a set of nodes with each node con-
taining one or more processors and memory. Nodes are connected using a low-latency,
high-bandwidth interconnect. Each processor can access the memory on its node with
low latency and memory on other nodes with higher latency. This class of systems
includes platforms such as the SGI Altix [2], the SGI Origin [3]. Communication in

? This work was supported in part by the Department of Energy under Grant DE-FC03-
01ER25504/A000, the Los Alamos Computer Science Institute(LACSI) through LANL con-
tract number 03891-99-23 as part of the prime contract (W-7405-ENG-36) between the DOE
and the Regents of the University of California, Texas Advanced Technology Program under
Grant 003604-0059-2001, and Compaq Computer Corporation under a cooperative research
agreement. This research was performed in part using the Molecular Science Computing Facil-
ity (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national
scientific user facility sponsored by the U.S. Department ofEnergy’s Office of Biological
and Environmental Research and located at the Pacific Northwest National Laboratory. Pacific
Northwest is operated for the Department of Energy by Battelle.

these systems occurs via cache line data transfers. Access to a data element on a remote
node causes the cache line containing the data element to be fetched into the cache of
the requesting node. On such systems, coarse-grain communication is accomplished by
moving a group of cache lines individually.

cafc uses a source-to-source translation approach to code generation, transform-
ing CAF into a Fortran 90 node program augmented with communication operations.
This enables a separation of concerns:cafc can leave the details of back-end code op-
timization to a Fortran 90 compiler and focus on managing parallelism, communication
and synchronization.

When transforming CAF into SPMD Fortran 90 node programs forshared-memory
multiprocessors, there are several possible ways of representing and manipulating co-
array data at the Fortran 90 language level. We explore several choices for representing
shared data for co-arrays and accessing both local and remote co-array data. We evalu-
ate the performance implications of these choices for several different codes including
CAF variants of the STREAM [4], Random Access [5], Spark98 [6], and NAS MG
& SP benchmarks [7]. We also compare the performance of the CAF versions against
implementations of the same benchmarks written using MPI [8] and OpenMP [9], the
most widely used parallel programming models.

In the next section, we briefly review the Co-array Fortran language and commu-
nication libraries used by our generated code. In Section 3,we describe the alternative
code shapes that we investigate in this study. In Section 4, we describe the benchmark
codes that we study and our experimental results comparing different strategies for rep-
resenting and accessing shared data. We summarize our findings in Section 5.

2 Background

Co-Array Fortran. CAF is a global address space model for SPMD parallel program-
ming that consists of a small set of extensions to Fortran 90.An executing CAF program
consists of a static collection of asynchronous process images. CAF programs explicitly
manage data locality and computation distribution. CAF supports distributed data using
a natural extension to Fortran 90 syntax. For example, the declarationinteger ::
x(n,m)[*] declares a shared co-array withn × m integers local to each process im-
age. The dimensions inside brackets are called co-dimensions. Co-arrays may also be
declared for user-defined types as well as primitive types. Alocal section of a co-array
may be a singleton instance of a type rather than an array of type instances. Instead of
explicitly coding message exchanges to obtain data belonging to other processes, a CAF
program can directly reference non-local values using an extension to Fortran 90 syntax
for subscripted references. For instance, processp can read the first column of data in
co-arrayx from processp+1 with the right-hand side reference tox(:,1)[p+1].
CAF also includes synchronization primitives. Since both remote data access and syn-
chronization are language primitives, they are amenable tocompiler optimization. A
more complete description of the CAF language can be found elsewhere [1].

Shared Memory Access Library (SHMEM). The SHMEM library [10], developed
by SGI, provides an application programming interface (API) for NUMA machines
such as the SGI Altix and Origin. For SPMD programs, SHMEM supports remote ac-
cess to symmetric data objects—arrays or variables that exist with the same size, type

and relative address in all processes. Examples of symmetric data objects include For-
tran COMMON block or SAVE variables and objects allocated from the symmetric
heap [10]. The SHMEM API contains routines for data transferusing either contigu-
ous or strided reads and writes, collective operations suchas broadcast and reductions,
barrier synchronization and atomic memory operations. SHMEM also supports remote
pointers, which enable direct access to data objects owned by another process.

Aggregate Remote Memory Copy Interface.Thecafc compiler generates code that
uses the Aggregate Remote Memory Copy Interface (ARMCI) [11]—a multi-platform
library for high-performance one-sided (get and put) communication—as its imple-
mentation substrate for global address space communication. One-sided communica-
tion separates data movement from synchronization; this can be particularly useful for
simplifying the coding of irregular applications. ARMCI provides both blocking and
split-phase non-blocking primitives for one-sided communication. ARMCI supports
non-contiguous data transfers. The latest version of ARMCIperforms NUMA-aware
memory allocation on the SGI Altix and Origin platforms using the SHMEM library’s
shmalloc primitive.

3 Implementing CAF on Shared Memory Architectures

Thecafc compiler translates CAF programs into Fortran 90 node programs augmented
with communication operations. In previous work [12], we described a translation strat-
egy for generating portable code and performed a preliminary evaluation of the code’s
performance on several cluster architectures. The portable code we generate allocates
memory for co-array data outside the Fortran 90 runtime system, initializes Fortran 90
pointers so that the node program can use them to access localco-array data, and per-
forms communication using ARMCIPUT andGET operations.

As we experimented withcafc-generated code on more parallel architectures [13],
we found that our generated code was not meeting our goal of performance transparency
across the range of architectures and codes. While generating code to use Fortran 90
pointers to access local co-array data is a natural and portable approach, we found that
in many cases the node performance ofcafc-generated code using Fortran 90 pointers
was often significantly slower than Fortran 90 code using arrays. Our experiments led
us to conclude that performance irregularities we observedwere a result of insufficient
optimization of pointer-based codes by node compilers.

In [13], we described generating communication using ARMCIPUT andGET prim-
itives. Though this approach is well-suited to cluster architectures, it fails to fully exploit
the capabilities of shared-memory architectures. In contrast to clusters, shared memory
architectures provide the ability to access remote memory directly via load and store
instructions, which makes fine-grain remote accesses much more efficient. On shared-
memory multiprocessors, Fortran 90 references can be used to access remote data di-
rectly, avoiding the overhead of calling library primitives for communication.

In this paper we compare Fortran 90 representations of COMMON block and SAVE
co-arrays on scalable shared-memory multiprocessors to find the one that yields su-
perior performance for both local computation and access toremote data. We report
our findings for two NUMA SGI platforms (Altix 3000 and Origin2000) and their
corresponding compilers (Intel and SGI MIPSPro Fortran compilers). An important

conclusion of our study is that no single Fortran 90 co-arrayrepresentation and code
generation strategy yields the best performance across allarchitectures and Fortran 90
compilers. Moreover, two co-array representations can be used profitably together (one
for effective local accesses, the other for effective remote accesses) to achieve the best
results. An appealing characteristic of CAF is that a CAF compiler can automatically
tailor code to a particular architecture and use whatever co-array representations, lo-
cal data access methods, and communication strategies are needed to deliver the best
performance.

3.1 Representing Co-arrays for Efficient Local Computation

To achieve the best performance for CAF applications, it is critical to support efficient
computation on co-array data. Becausecafc uses source-to-source translation into
Fortran 90, this leads to the question of what is the best set of Fortran 90 constructs
for representing and referencing co-array data. There are two major factors affecting
the decision: (i) how well a particular back-end Fortran 90 compiler optimizes different
kinds of data references, and (ii) hardware and operating system capabilities of the
target architecture.

Most Fortran compilers effectively optimize references toCOMMON block and
SAVE variables, but fall short optimizing the same computation when data is accessed
using Cray or Fortran 90 pointers. The principal stumbling block is alias analysis in the
presence of pointers. COMMON block and SAVE variables as well as subroutine formal
arguments in Fortran 90 cannot alias, while Cray and Fortran90 pointers can. When
compiling a CAF program,cafc knows that in the absence of Fortran EQUIVALENCE
statements COMMON block and SAVE co-arrays occupy non-overlapping regions of
memory; however, this information is not conveyed to a back-end compiler ifcafc
generates code to access local co-array data through pointers. Conservative assumptions
about aliases cause back-end compilers to forgo critical performance optimizations such
as software pipelining and unroll-and-jam, among others. Some, but not all, Fortran 90
compilers have flags that enable users to specify that pointers do not alias, which can
ameliorate the effects of analysis imprecision.

Besides the aliasing problem, using Fortran 90 pointers to access data can increase
register pressure and inhibit software prefetching. The shape of a Fortran 90 pointer
is not known at compile time; therefore, bounds and strides are not constant and thus
occupy extra registers, increasing register pressure. Also a compiler has no knowledge
whether the memory pointed to by a Fortran 90 pointer is contiguous or strided, which
complicates generation of software prefetch instructions.

The hardware and the operating system impose extra constraints on whether a par-
ticular co-array representation is appropriate. For example, on a shared-memory system
a co-array should not be represented as a Fortran 90 COMMON variable if a COMMON
block cannot be mapped into multiple process images. Below we discuss five possible
Fortran 90 representations for the local part of a co-array variablereal a(10,20)[*].

Fortran 90 pointer. Figure 1(a) shows the representation of co-array data first used
bycafc. At program launch,cafc’s run-time system allocates memory to hold10 ×

20 array of double precision numbers and initializes theca%local field to point to it.
This approach enabled us to achieve performance roughly equal to that of MPI

on an Itanium2 cluster with a Myrinet2000 interconnect using the Intel Fortran com-

type t1
real, pointer :: local(:,:)

end type t1
type (t1) ca

(a) Fortran 90 pointer representation.

type t2
real :: local(10,20)

end type t2
type (t2), pointer :: ca

(b) Pointer to structure representation.

real :: a local(10,20)
pointer (a ptr, a local)

(c) Cray pointer representation.

real :: ca(10,20)
common /ca cb/ ca

(d) COMMON block representation.

subroutine foo(...)
real a(10,20)[*]
common /a cb/ a
...

end subroutine foo

(e) Original subroutine.

! subroutine-wrapper
subroutine foo(...)
! F90 pointer representation of a
...
call foo body(ca%local(1,1),...)

end subroutine foo

! subroutine-body
subroutine foo body(a local,...)
real :: a local(10,20)
...

end subroutine foo body

(f) Parameter representation.

Fig. 1. Fortran 90 representations for co-array local data.

piler v7.0 (using a “no-aliasing” compiler flag) to compilecafc’s generated code [12].
Other compilers do not optimize Fortran 90 pointers as effectively. Potential aliasing of
Fortran 90 or Cray pointers inhibits some high-level loop transformations in the HP For-
tran compiler for the Alpha architecture. The absence of a flag to signal the HP Alpha
Fortran compiler that pointers don’t alias forced us to explore alternative strategies for
representing and referencing co-arrays. Similarly, on theSGI Origin 2000, the MIPSPro
Fortran 90 compiler does not optimize Fortran 90 pointer references effectively.

Fortran 90 pointer to structure. In contrast to the Fortran 90 pointer representation
shown in Figure 1(a), thepointer-to-structure shown in Figure 1(b) conveys constant
array bounds and contiguity to the back-end compiler.

Cray pointer. Figure 1(c) shows how a Cray pointer can be used to represent the
local portion of a co-array. This representation has similar properties to the pointer-to-
structure representation. Though the Cray pointer is not a standard Fortran 90 construct,
many Fortran 90 compilers support it.

COMMON block. On the SGI Altix and Origin architectures, the local part of aco-
array can be represented as a COMMON variable in each SPMD process image (as
shown in Figure 1(d)) and mapped into remote images as symmetric data objects using
SHMEM library primitives. References to local co-array data are expressed as refer-
ences to COMMON block variables. This code shape is the most amenable to back-end
compiler optimizations and results in the best performancefor local computation on
COMMON and SAVE co-array variables (see Section 4.1).

Subroutine parameter representation.To avoid pessimistic assumptions about alias-
ing, aprocedure splitting technique can be used. If one or more COMMON block or
SAVE co-arrays are accessed intensively within a procedure, the procedure can be split
into wrapper and body procedures (see Figures 1(e) and 1(f)). The wrapper procedure
passes all (non-EQUIVALENCEd) COMMON block and SAVE co-arrays used in the
original subroutine to the body procedure as explicit-shape arguments1; within the body
procedure, these variables are then referenced as routine arguments. This representation

1 Fortran 90 argument passing styles are described in detail elsewhere [14].

DO J=1, N
C(J)=A(J)[p]

END DO

(a) Remote element access

DO J=1,N
call CafGetScalar(A_h, A(J), p, tmp)
C(J)=tmp

END DO

(b) General communication code

Fig. 2. General communication code generation.

enablescafc to pass bounds and contiguity information to the back-end compiler. The
procedure splitting technique proved effective for both the HP Alpha Fortran compiler
and the Intel Fortran compiler.

3.2 Code Generation for Remote Accesses
In CAF, communication events are expressed at the language level by using the bracket
notation for co-dimensions to reference remote data. The CAF programming model is
explicit enough that a user can perform communication optimizations such as vector-
ization or aggregation at the source level. To facilitate retargetability while enabling
code to be tailored to a particular target system,cafc uses an abstract interface for
instantiating one-sided communication operations. Currently, cafc does not vector-
ize communication and communication is placed adjacent to the statement in which a
non-local reference appears.

Here we describe several candidate code shapes for co-arraycommunication; these
range from library-based platform-independent communication to several strategies for
expressing fine-grain load/store communication on shared memory systems.

Communication generation for generic parallel architectures. To access data re-
siding on a remote node,cafc generates ARMCI calls. Unless the statement causing
communication is a simple copy, temporary storage is allocated to hold non-local data.

Consider the statementa(:) = b(:)[p] + ..., which reads co-array data
for b from another process image. First,cafc allocates a temporary,b temp, just
prior to the statement to hold the value ofb(:) from imagep. cafc adds an ARMCI
GET operation to retrieve the data from imagep, rewrites the statement asa(:) =
b temp(:) + ... and inserts code to deallocateb temp after the statement. For a
statement containing a co-array write to a remote image, such asc(:)[p] = ...,
cafc inserts allocation of a temporaryc temp prior to the statement. Then,cafc
rewrites the statement to store its result inc temp, adds an ARMCIPUT operation after
the statement to perform the non-local write and inserts code to deallocatec temp.

Communication generation for shared memory architectures. Library-based com-
munication adds unnecessary overhead for fine-grain communication on shared mem-
ory architectures. Loads and stores can be used to directly access remote data more
efficiently. Here we describe several representations for fine-grain load/store access to
remote co-array data.

Fortran 90 pointers. With proper initialization, Fortran 90 pointers can be usedto di-
rectly address non-local co-array data. The CAF runtime library provides the virtual
address of a co-array on remote images; this is used to set up aFortran 90 pointer for
referencing the remote co-array. An example of this strategy is presented in Figure 3(a).
The generated code accesses remote data by dereferencing a Fortran 90 pointer, for

which Fortran 90 compilers generate direct loads and stores. In Figure 3(a), the proce-
dureCafSetPtr is called for every access; this adds significant overhead. Hoisting
pointer initialization outside the loop as shown in Figure 3(b) can substantially improve
performance. To perform this optimization automatically,cafc needs to determine that
the process image number for a non-local co-array referenceis loop invariant.

DO J=1,N
ptrA=>A(J)
call CafSetPtr(ptrA,p, A_h)
C(J)=ptrA

END DO

(a) Fortran 90 pointer to remote data

ptrA=>A(1:N)
call CafSetPtr(ptrA,p,A_h)
DO J=1,N

C(J)=ptrA(J)
END DO

(b) Hoisted Fortran 90 pointer initialization

Fig. 3. Fortran 90 pointer access to remote data.

Vector of Fortran 90 pointers. An alternate representation that doesn’t require pointer
hoisting for good performance is to precompute a vector of remote pointers for all the
process images per co-array. This strategy should work wellfor parallel systems of
modest size. Currently, all shared memory architectures meet this requirement. In this
case, the remote reference in the code example from Figure 2(a) would become:
C(J) = ptrArrayA(p)%ptrA(J).

Cray pointers. We also explored a class of shared-memory code generation strate-
gies based on the SHMEM library. After allocating shared memory with shmalloc,
one can useshmem ptr to initialize a Cray pointer to the remote data. This pointer
can then be used to access the remote data. Figure 4(a) presents a translation of the
code in Figure 2 usingshmem ptr. Without hoisting pointer initialization as shown
in Figure 4(b), this code incurs a performance penalty similar to the code shown in
Figure 3(a).

POINTER(ptr, ptrA)
...
DO J=1,N

ptr = shmem_ptr(A(J), p)
C(J)=ptrA

END DO

(a) Cray pointer to remote data

POINTER(ptr, ptrA)
...
ptr = shmem_ptr(A(1), p)
DO J=1,N

C(J)=ptrA(J)
END DO

(b) Hoisted Cray pointer initialization

Fig. 4.Cray pointer access to remote data.

4 Experiments and Discussion

Currently,cafc generates code that uses Fortran 90 pointers for referencesto local
co-array data. To access remote co-array elements,cafc can either generate ARMCI
calls or initialize Fortran 90 pointers for fine-grain load/store communication. Initial-
ization of pointers to remote co-array data occurs immediately prior to statements ref-
erencing non-local data; pointer initialization is not yetautomatically hoisted out of
loops. To evaluate the performance of alternate co-array representations and communi-
cation strategies, we hand-modified code generated bycafc or hand-coded them. For
instance, to evaluate the efficiency of using SHMEM instead of ARMCI for commu-
nication, we hand-modifiedcafc-generated code to useshmem put/shmem get for
both fine-grain and coarse-grain accesses.

We used two NUMA platforms for our experiments: an SGI Altix 30002 and an
SGI Origin 20003. We used the STREAM benchmark to determine the best co-array
representation for local and remote accesses. To determinethe highest-performing rep-
resentation for fine-grain remote accesses we studied the Random Access and Spark98
benchmarks. To investigate the scalability of CAF codes with coarse-grain communi-
cation, we show results for the NPB benchmarks SP and MG.

4.1 STREAM

The STREAM [4] benchmark is a simple synthetic benchmark program that measures
sustainable memory bandwidth in MB/s (10

6 bytes/s) and the corresponding computa-
tion rate for simple vector kernels. The top half of Figure 5 shows vector kernels for
a Fortran 90 version of the benchmark. The size of each array should exceed the ca-
pacity of the last level of cache. The performance of compiled code for the STREAM
benchmark also depends upon the quality of the code’s instruction stream4.

DO J=1, N
C(J)=A(J)

END DO

(a) Copy

DO J=1, N
B(J)=s*C(J)

END DO

(b) Scale

DO J=1, N
C(J)=A(J)+B(J)

END DO

(c) Add

DO J=1, N
A(J)=B(J)+s*C(J)

END DO

(d) Triad

DO J=1, N
C(J)=A(J)[p]

END DO

(e) CAF Copy

DO J=1, N
B(J)=s*C(J)[p]

END DO

(f) CAF Scale

DO J=1, N
C(J)=A(J)[p]+B(J)[p]

END DO

(g) CAF Add

DO J=1, N
A(J)=B(J)[p]+s*C(J)[p]

END DO

(h) CAF Triad

Fig. 5. The STREAM benchmark kernels (F90 & CAF).

We designed two CAF versions of the STREAM benchmark: one to evaluate the
representations for local co-array accesses, and a second to evaluate the remote access
code for both fine-grain accesses and bulk communication. Table 1 presents STREAM
bandwidth measurements on the SGI Altix 3000 and the SGI Origin 2000 platforms.
Evaluation of local co-array access performance.To evaluate the performance of lo-
cal co-array accesses, we adapted the STREAM benchmark by declaringA, B andC
as co-arrays and keeping the kernels from the top half of Figure 5 intact. We used the
Fortran 90 version of STREAM with the arrays A, B and C in a COMMON block as a
baseline for comparison The results are shown in the local access part of the Table 1.
The results for the COMMON block representation are the sameas the results of the
original Fortran 90. The Fortran 90 pointer representationwithout the “no-aliasing”
compiler flag yields only 30% of the best performance for local access; it is not always
possible to use no-aliasing flags because user programs might have aliasing unrelated to
co-array usage. On both architectures, the results show that the most efficient represen-
tation for co-array local accesses is as COMMON block variables. This representation

2 Altix 3000: 128 Itanium2 1.5GHz processors with 6MB L3 cache, and 128 GB RAM, running
the Linux64 OS with the 2.4.21 kernel and the 8.0 Intel compilers

3 Origin 2000: 16 MIPS R12000 processors with 8MB L2 cache and 10 GB RAM, running IRIX
6.5 and the MIPSpro Compilers version 7.3.1.3m

4 On Altix, we use-override limits -O3 -tpp2 -fnoalias for the Intel 8.0 com-
piler. On the Origin, we use-64 -O3 for the MIPSpro compiler.

SGI Altix 3000 SGI Origin 2000

Program representation Copy Scale Add Triad Copy ScaleAdd Triad

Fortran, COMMON block arrays 3284 3144 3628 3802 334 293 353 335
Local access, F90 pointer, w/o no-aliasing flag 1009 929 1332 1345 323 276 311 299
Local access, F90 pointer 3327 3128 3612 3804 323 277 312 298
Local access, F90 pointer to structure 3209 3107 3629 3824 334 293 354 335
Local access, Cray pointer 3254 3061 3567 3716 334 293 354 335
Local access, split procedure 3322 3158 3611 3808 334 288 354 332
Local access, vector of F90 pointers 3277 3106 3616 3802 319 288 312 302

Remote access, general strategy 33 32 24 24 11 11 8 8
Remote access bulk, general strategy 2392 1328 1163 1177 273 115 99 98
Remote access, F90 pointer 44 44 34 35 10 10 7 7
Remote access bulk, F90 pointer 1980 2286 1997 2004 138 153 182 188
Remote access, hoisted F90 pointer 1979 2290 2004 2010 294 268 293 282
Remote access, shmemget 104 102 77 77 72 70 57 56
Remote access, Cray pointer 71 69 60 60 26 26 19 19
Remote access bulk, Cray ptr 2313 2497 2078 2102 346 294 346 332
Remote access, hoisted Cray pointer, w/o no-aliasing flag2310 2231 2059 2066 286 255 283 275
Remote access, hoisted Cray pointer 2349 2233 2057 2073 346 295 347 332
Remote access, vector of F90 pointers 2280 2498 2073 2105 316 291 306 280
Remote access, hybrid representation 2417 2579 2049 2062 350 295 347 333
Remote access, OpenMP 2397 2307 2033 2052 312 301 317 287

Table 1.Bandwidth for STREAM in MB/s on the SGI Altix 3000 and the SGI Origin 2000.

enables the most effective optimization by the back-end Fortran 90 compiler; however,
it can be used only for COMMON and SAVE co-arrays; a differentrepresentation is
necessary for allocatable co-arrays.

Evaluation of remote co-array access performance.We evaluated the performance
of remote reads by modifying the STREAM kernels so that A,B,Care co-arrays, and
the references on the right-hand side are all remote. The resulting code is shown in the
bottom half of Figure 5. We also experimented with a bulk version, in which the ker-
nel loops are written in Fortran 90 array section notation. The results presented in the
Table 1 correspond to the following code generation options(for both fine-grain and
bulk accesses): the library-based communication with temporary buffers using ARMCI
calls, Fortran 90 pointers, Fortran 90 pointers with the initialization hoisted out of the
kernel loops, library-based communication using SHMEM primitives, Cray pointers,
Cray pointers with hoisted initialization without the no-aliasing flag, Cray pointers with
hoisted initialization, and a vector of Fortran 90 pointersto remote data. The next result
corresponds to a hybrid representation: using the COMMON block representation for
co-array local accesses and Cray pointers for remote accesses. The last result corre-
sponds to an OpenMP implementation of the STREAM benchmark coded in a similar
style to the CAF versions; this is provided to compare the CAFversions against an
established shared memory programming model.

The best performance for fine-grain remote accesses is achieved by the versions that
use Cray pointers or Fortran 90 pointers to access remote data with the initialization of
the pointers hoisted outside loops. This shows that hoisting initialization of pointers
to remote data is imperative for both Fortran 90 pointers andCray pointers. Using the
vector of Fortran 90 pointers representation uses a simplerstrategy to hoist pointer
initialization that requires no analysis, yet achieves acceptable performance. Using a
function call per each fine-grain access incurs a factor of 24performance degradation
on Altix and a factor of five on the Origin.

For bulk access, the versions that use Fortran 90 pointers orCray pointers perform
better for the kernels Scale, Add and Triad than the general version (1.5-2 times bet-
ter on Altix and 2.5-3 times better on Origin), which uses buffers for non-local data.
Copying into buffers degrades performance significantly for these kernels. For Copy,
the general version does not use an intermediate buffer; instead, it usesmemcpy to
transfer the data directly into theC array and thus achieves high performance.

We implemented an OpenMP version of STREAM that performs similar remote
data acesses. On Altix, the OpenMP version delivered performance similar to the CAF
implementation for the Copy, Add, and Triad kernels, and 90%for the Scale kernel. On
Origin, the OpenMP version achieved 86-90% of the performance of the CAF version.

In conclusion, for top performance on the Altix and Origin platforms, we need dis-
tinct representations for co-array local and remote accesses. For COMMON and SAVE
variables, local co-array data should reside in COMMON blocks or be represented as
subroutine dummy arguments; for remote accesses,cafc should generate communi-
cation code based on Cray pointers with hoisted initialization.

4.2 Random Access

To evaluate the quality of the CAF compiler generated code for applications that re-
quire fine-grain accesses, we selected the Random Access benchmark from the HPC
Challenge benchmark suite [5], which measures the rate of random updates of memory,
and implemented a CAF version.

The serial version of the benchmark declares a large main array Table of 64-bit
words and a small substitution tablestable to randomize values in the large array.
TheTable has the sizeTableSize = 2

n words. After initializingTable, the code
performs a number of random updates onTable locations. The kernel of the serial
benchmark is shown in Figure 6 (a).

do i = 0, 4*TableSize
pos = <random number in

[0,TableSize-1]>
pos2 = <pos shifted to index

inside stable>
Table(pos) = Table(pos) xor

stable(pos2)
end do

(a) Sequential Random Access

do i = 0, 4*TableSize
gpos = <random number in

[0, GlobalTableSize-1]>
img = gpos div TableSize
pos = gpos mod TableSize
pos2 = <pos shifted to index

inside stable>
Table(pos)[img] = Table(pos)[img] xor

stable(pos2)
end do

(b) CAF Random Access

Fig. 6. Random Access Benchmark.

In the CAF implementation, the global table is a co-array.TableSize words re-
side on each image, so that the aggregate size isGlobalTableSize = TableSize
* NumberOfImages. Each image has a private copy of the substitution table. All
images concurrently generate random global indices and perform the update of the cor-
responding locations. No synchronization is used for concurrent updates (errors on up
to 1% of the locations due to race conditions are acceptable). The kernel for all of our
CAF variants of the benchmark is shown in Figure 6 (b).

A parallel MPI version [5] is available that uses a bucket sort algorithm to cache
a number of remote updates locally. Compared to the CAF version, the bucket version

improves locality, increases communication granularity and decreases TLB misses for
modest numbers of processors.

Our goal is to evaluate the quality of source-to-source translation for applications
where fine-grain accesses are preferred due to the nature of the application. Previous
studies have shown the difficulty of improving the granularity of fine-grain shared mem-
ory applications [15]. We use the Random Access benchmark asan analog of a complex
fine-grain application. For this reason, we did not implement the bucket sorted version
in CAF, but instead focused on the pure fine-grain version presented above.

The results of Random Access with different co-array representations and code gen-
eration strategies are presented in Table 2 for the SGI Origin 2000 architecture and in
Table 3 for the SGI Altix 3000 architecture. The results are reported in MUPs,10

6 up-
dates per second, per processor for two main table sizes: 1MBand 256MB per image,
simulating an application with modest memory requirementsand an application with
high memory requirements. All experiments were done on a power of two number of
processors, so that we can replacedivs andmods with fast bit operations.

Version size per proc = 1MB size per proc = 256 MB
procs. 1 2 4 8 16 1 2 4 8 16

CAF vect. of F90 ptrs.10.06 1.04 0.52 0.25 0.11 1.12 0.81 0.57 0.39 0.2
CAF F90 pointer 0.31 0.25 0.2 0.16 0.15 0.24 0.23 0.21 0.18 0.12
CAF Cray pointer 12.16 1.11 0.53 0.25 0.11 1.11 0.88 0.58 0.4 0.21

CAF shmem 2.36 0.77 0.44 0.25 0.11 0.86 0.65 0.53 0.36 0.19
CAF general comm. 0.41 0.31 0.25 0.2 0.09 0.33 0.3 0.28 0.23 0.14

OpenMP 18.93 1.18 0.52 0.32 0.17 1.1 0.81 0.62 0.45 0.23

MPI bucket 2048 15.83 4.1 3.25 2.49 0.1 1.15 0.85 0.69 0.66 0.1

Table 2.Random Access performance on the Origin 2000 in MUPs per processor.

Version size per proc = 1MB size per proc = 256 MB
procs. 1 2 4 8 16 32 1 2 4 8 16 32

CAF vect. of F90 ptrs.47.66 14.85 3.33 1.73 1.12 0.73 5.02 4.19 2.88 1.56 1.17 0.76
CAF F90 pointer 1.6 1.5 1.14 0.88 0.73 0.55 1.28 1.27 1.1 0.92 0.74 0.59
CAF Cray pointer 56.38 15.60 3.32 1.73 1.13 0.75 5.14 4.23 2.91 1.81 1.34 0.76

CAF shmem 4.43 3.66 2.03 1.32 0.96 0.67 2.57 2.44 1.91 1.39 1.11 0.69
CAF general comm. 1.83 1.66 1.13 0.81 0.63 0.47 1.37 1.34 1.11 0.81 0.73 0.52

OpenMP 58.91 15.47 3.15 1.37 0.91 0.73 5.18 4.28 2.96 1.55 1.17 —

MPI bucket 2048 59.81 21.08 16.40 10.52 5.42 1.96 5.21 3.85 3.66 3.36 3.16 2.88

Table 3.Random Access performance on the Altix 3000 in MUPs per processor.

Each table presents results in MUPs per processor for seven variants of Random
Access.CAF vector of F90 ptrs. uses a vector of Fortran 90 pointers to represent co-
array data.CAF F90 pointer uses Fortran 90 pointers to directly access co-array data.
CAF Cray pointer uses a vector of integers to store the addresses of co-array data. A
Cray pointer is initialized in place to point to remote data and then used to perform an
update.CAF shmem usesshmem put andshmem get functions called directly from
Fortran.CAF general comm. uses the ARMCI functions to access co-array data.MPI
bucket 2048 implements a bucket sorted algorithm with a bucket size of 2048 words.
OpenMP uses the same fine-grained algorithm as the CAF versions; it uses a private
substitution table and performs first-touch initialization of the global table to improve
memory locality.

The best representations for fine-grain co-array accesses are the Cray pointer and
the vector of Fortran 90 pointers. The other representations, which require a function
call for each fine-grain access, yield inferior performance. The MPI bucket 2048 row
is presented for reference and shows that an algorithm with better locality properties
and coarser-grain communication clearly achieves better performance. It is worth men-
tioning that the bucketed MPI implementation is much harderto code compared to a
CAF version. The OpenMP version of the benchmark performs aswell as the best CAF
version, due to similar fine-grained access patterns.

4.3 Spark98

To evaluate the performance of more realistic fine-grain applications, we selected CMU’s
Spark98 [6] benchmark. This benchmark computes a sparse matrix-vector product of a
symmetric matrix stored in compressed sparse row format, and is available in several
versions: a sequential version, a highly tuned shared-memory threaded version (denoted
ashybrid in [6]) and an MPI version. The original versions are writtenin C, we trans-
lated their computational kernels into Fortran 90 and derived a CAF version from the
original MPI version.

All parallel versions of Spark98 use a sophisticated data partitioning which has
been computed offline, to improve load balance between processors. The core of the
benchmark computes a partial sparse matrix-vector productlocally and then assembles
the result across processors.

Our experimental results were collected on an Altix 3000 andan SGI Origin 2000.
On the Altix 3000 architecture, we considered two differentplacements of a parallel job
to the processors. Thesingle placement corresponds to running one process per dual-
processor node; in thedual placement two processes are run on both CPUs of a node,
sharing the local memory bandwidth. To eliminate variations in local performance intro-
duced by the backend Fortran or C compilers, the CAF and MPI versions use Fortran
kernels for the local computation and result assembly. The threaded shared-memory
version uses the original C kernels.

We evaluate three different CAF alternatives: the first (CAFpacked PUTs) uses
manual data packing andPUTs for communication, the second (CAF packed GETs)
uses manual data packing andGETs for communication, the third version (CAF GETs)
uses the Fortran 90 array section vector subscript notationto access remote data in place
through a Cray pointer (during the assembly phase), but thisnotation is not currently
handled automatically by our CAF compiler. We consider the third version to be written
in a more natural style for CAF programs.

Figure 7 shows results for the Spark98 benchmark for the versions described pre-
viously for dual placement executions on the Altix 3000; similar results were observed
for asingle placement. The CAF and MPI versions have similar performance for a small
number of processors (8-16). On the Altix 3000, for larger numbers of processors, the
CAF versions outperform the MPI implementation. We observed that the time spent
for the result assembly stage is 2.5 times higher on 32 processors and 5 times higher
on 64 processors. While we do not know the implementation details of the proprietary
MPI library, it appears that the single copy ARMCI data transfers are more efficient. In
the hybrid version, a single thread allocates all data structures, thus reducing memory
locality for the other threads resulting in poor load balance and non-scalable perfor-

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

CAF packed PUTs
CAF packed GETs
CAF GETs
MPI
Hybrid

(a) Altix 3000

1 2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

CAF packed PUTs
CAF packed GETs
CAF GETs
MPI
Hybrid

(b) Origin 2000

Fig. 7. Comparison of parallel efficiencies (per iteration) for Spark98 (sf2 trace) for CAF, MPI
and hybrid versions on an SGI Altix 3000 and an SGI Origin 2000.

mance. The CAF GETs version suffers up to a 13% performance penalty for the Altix
3000 and up to a 9% penalty on the Origin 2000 compared to the fastest CAF version
(packed PUTs). This shows that this more natural programming style only has a small
abstraction overhead.

4.4 NAS MG and SP
To evaluate our code generation strategy for hardware shared memory platforms for
codes with coarse-grain communication, we selected two benchmarks, MG and SP,
from the NAS Parallel Benchmarks [7, 16], widely used for evaluating parallel systems.

We compare four versions of the benchmarks: the standard 2.3MPI implementa-
tion, two compiler-generated CAF versions based on the 2.3 distributionCAF-cluster,
which uses the Fortran 90 pointer co-array representation and the ARMCI functions
that rely on an architecture-optimized memory copy subroutine supplied by the vendor
to perform data movement, andCAF-shm, which uses the Fortran 90 pointer co-array
representation, but uses Fortran 90 pointers to access remote data, as well as the official
3.0 OpenMP [16] versions of SP and MG. The OpenMP version of SPincorporates
structural changes made to the 3.0 serial version to improvecache performance on
uniprocessor machines, such as fusing loops and reducing the storage size for tempo-
raries; it also uses a 1D strategy for partitioning computation that is better suited for
OpenMP.

In the CAF versions, all data transfers are coarse-grain communication arising from
co-array section assignments. We rely on the back-end Fortran 90 compiler to scalar-
ize the transformed copies efficiently. Sequential performance measurements used as a
baseline were performed using the NPB 2.3-serial release.

For each benchmark, we present the parallel efficiency of theMPI, CAF and OpenMP
implementations5. On an Altix, we evaluate these benchmarks for both thesingle and

5 For each parallel versionρ, the efficiency metric is computed as ts
P×tp(P,ρ)

. In this equation,ts
is the execution time of the original sequential version;P is the number of processors;tp(P, ρ)
is the time for the parallel execution onP processors using parallelizationρ. Perfect speedup
would yield efficiency 1.0 for each processor configuration.

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

CAF−cluster, Altix 3000 single
CAF−shm, Altix 3000 single
MPI Altix 3000 single
OpenMP Altix 3000 single
CAF−cluster, Altix 3000 dual
CAF−shm, Altix 3000 dual
MPI Altix 3000 dual
OpenMP Altix 3000 dual

(a) NAS SP

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

CAF−cluster, Altix 3000 single
CAF−shm, Altix 3000 single
MPI Altix 3000 single
OpenMP Altix 3000 single
CAF−cluster, Altix 3000 dual
CAF−shm, Altix 3000 dual
MPI Altix 3000 dual
OpenMP Altix 3000 dual

(b) NAS MG

Fig. 8.Comparison of parallel efficiencies for NAS SP and NAS MG for MPI, CAF with general
communication and CAF with shared memory communication, aswell as OpenMP versions on
an SGI Altix 3000.

dual processor configurations (see Section 4.3). The experimental results for problem
size class C are shown on the figure 8. For SP, both CAF versionsachieve similar
performance—comparable to the standard MPI version. For MG, the CAF-cluster ver-
sion performs better than the CAF-shm version. Since both versions use coarse-grain
communication, the performance difference shows that the architecture-tuned memory
copy subroutine performs better than the compiler scalarized data copy; it effectively
hides the interconnect latency by keeping the optimal number of memory operations
in flight. The CAF cluster version outperforms the MPI version for both the single and
dual configurations. The results for the OpenMP versions arenot directly comparable
since they are based on the 3.0 source base, but they are knownto be well designed and
tuned for OpenMP execution. The OpenMP performance is good for a small number of
processors (up to 8-9) but then tails off compared to the MPI and CAF versions.

5 Conclusions

We investigated several implementation strategies for efficiently representing, access-
ing and communicating distributed data in Fortran 90 sourcecode generated by a CAF
compiler for scalable shared memory systems. Generating fine-grain communication
that uses direct loads and stores for the STREAM benchmark improved the perfor-
mance by a factor of 24 on the Altix and a factor of five on the Origin. We found that
for benchmarks requiring fine-grain communication, such asRandom Access, a tai-
lored code generation strategy that takes into account architecture and back-end com-
piler characteristics, provides better performance. In contrast, benchmarks requiring
only coarse-grain communication deliver better performance by using an architecture’s
tunedmemcpy routine for bulk data movement. Our current library-based code gen-
eration already enables us to achieve performance comparable to or better than that of
hand-tuned MPI for benchmarks such as SP and MG, which use coarse-grain commu-
nication. The Spark98 experiments showed that programmingin a natural CAF style by
using remote data in place incurs an acceptable performancepenalty compared to the
fastest CAF version, which manages buffers explicitly.

Based on our study, we plan to develop suport for automatic shared memory code
generation using the COMMON block representation for localco-array accesses and
using a pointer-based representation for remote accesses in conjunction with pointer
initialization hoisting. We will add support for automaticrecognition of contiguous
remote data transfers and implement them using calls to optimized system primitives.
These strategies will enablecafc to generate code with high performance for both
local and remote accesses on scalable shared-memory systems.

Acknowledgments
We thank J. Nieplocha and V. Tipparaju for their collaboration on ARMCI. We thank F.
Zhao for her work on the compiler and K. Feind for his insightsabout the Altix.

References

1. Numrich, R.W., Reid, J.K.: Co-Array Fortran for parallelprogramming. ACM Fortran Forum
17 (1998) 1–31

2. Silicon Graphics, Inc.: The SGI Altix 3000 Global Shared-Memory Architecture.http:
//www.sgi.com/servers/altix/whitepapers/tech_papers.html (2004)

3. Laudon, J., Lenoski, D.: The SGI Origin: a ccNUMA highly scalable server. In: Proceedings
of the 24th Intl. Symposium on Computer Architecture, ACM Press (1997) 241–251

4. McCalpin, J.D.: Sustainable Memory Bandwidth in CurrentHigh Performance Computers.
Silicon Graphics, Inc., MountainView, CA. (1995)

5. HPC Challenge Developers: HPC Challenge Benchmark.http://icl.cs.utk.edu/
projectsdev/hpcc (2003)

6. O’Hallaron, D.R.: Spark98: Sparse matrix kernels for shared memory and message passing
systems. Technical Report CMU-CS-97-178, School of Computer Science, Carnegie Mellon
University (1997)

7. Bailey, D., Harris, T., Saphir, W., van der Wijngaart, R.,Woo, A., Yarrow, M.: The NAS par-
allel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research Center (1995)

8. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The Complete
Reference. MIT Press (1995)

9. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory Program-
ming. IEEE Comput. Sci. Eng.5 (1998) 46–55

10. Silicon Graphics, Inc.: MPT Programmer’s Guide, mpi manpages, introshmem man pages.
http://techpubs.sgi.com (2002)

11. Nieplocha, J., Carpenter, B. In: ARMCI: A Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-Time Systems. Volume 1586 of Lecture Notes
in Computer Science. Springer-Verlag (1999) 533–546

12. Coarfa, C., Dotsenko, Y., Eckhardt, J., Mellor-Crummey, J.: Co-array Fortran Performance
and Potential: An NPB Experimental Study. Number 2958 in LNCS, Springer-Verlag (2003)

13. Dotsenko, Y., Coarfa, C., Mellor-Crummey, J.: A Multiplatform Co-Array Fortran Com-
piler. In: Proceedings of the 13th Intl. Conference of Parallel Architectures and Compilation
Techniques, Antibes Juan-les-Pins, France (2004)

14. Adams, J.C., Brainerd, W.S., Martin, J.T., Smith, B.T.,Wagener, J.L.: Fortran 90 Handbook:
Complete ANSI/ISO Reference. McGraw Hill (1992)

15. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.:The SPLASH-2 programs: Char-
acterization and methodological considerations. In: Proceedings of the 22th International
Symposium on Computer Architecture, Santa Margherita Ligure, Italy (1995) 24–36

16. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementationof NAS parallel benchmarks
and its performance. Technical Report NAS-99-011, NASA Ames Research Center (1999)

