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ABSTRACT
Co-array Fortran (CAF)—a small set of extensions to For-
tran 90—is an emerging model for scalable, global address
space parallel programming. CAF’s global address space
programming model simplifies the development of single-
program-multiple-data parallel programs by shifting the bur-
den for managing the details of communication from devel-
opers to compilers. This paper describes cafc—a prototype
implementation of an open-source, multiplatform CAF com-
piler that generates code well-suited for today’s commodity
clusters. The cafc compiler translates CAF into Fortran 90
plus calls to one-sided communication primitives. The pa-
per describes key details of cafc’s approach to generating
efficient code for multiple platforms. Experiments compare
the performance of CAF and MPI versions of several NAS
parallel benchmarks on an Alpha cluster with a Quadrics
interconnect, an Itanium 2 cluster with a Myrinet 2000 in-
terconnect and an Itanium 2 cluster with a Quadrics inter-
connect. These experiments show that cafc compiles CAF
programs into code that delivers performance roughly equal
to that of hand-optimized MPI programs.

1. INTRODUCTION
Parallel languages and parallelizing compilers have been the
focus of compiler research for many years. Over the last
decade, OpenMP [4] and High Performance Fortran (HPF) [9]
are the parallel programming models that have received the
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most attention. However, neither of these models has been
accepted for writing scalable, high-performance parallel pro-
grams for commodity clusters. OpenMP provides program-
mers with little control over data layout; as a result, OpenMP
programs are difficult to map efficiently to distributed mem-
ory platforms. HPF, in contrast, enables programmers to ex-
plicitly control the mapping of data to processors; however,
its abstract programming model makes compilation chal-
lenging and, to date, commercial HPF compilers have failed
to deliver high-performance for a broad range of programs.
As a result, the Message Passing Interface (MPI) [8]—a
library-based programming model that enables application
developers to control the placement of data, computation
and communication—has become the de facto standard for
scalable parallel programming.

Dissatisfaction with the complexity of writing MPI programs
has spurred a resurgence of research into language-based
parallel programming models. Three languages have been
the focus of recent attention as promising near-term alter-
natives to MPI: Co-array Fortran (CAF) [12, 13], Unified
Parallel C (UPC) [2] and Titanium [18]. Each of these
languages supports a Global Address Space (GAS) model
for single-program-multiple-data (SPMD) parallel program-
ming. These language models have three key strengths.
First, they abstract away much of the complexity of com-
munication that frustrates MPI programmers; one simply
reads and writes shared variables to communicate. With
communication and synchronization as language primitives,
programs written in SPMD GAS languages are also more
amenable to compiler-directed communication optimization
than MPI programs. Second, like MPI, SPMD GAS lan-
guages enable programmers to hand-craft locality-aware par-
allelizations by providing them with control over placement
of data, computation and communication. This approach
provides better locality control than OpenMP and avoids
HPF’s vulnerability to compiler shortcomings. Third, since
SPMD GAS models are less abstract than HPF, they are
easier to compile effectively.

To date, CAF has not appealed to application scientists as
a model for developing scalable, portable codes because the
language is still somewhat immature and a fledgling com-
piler is only available on Cray platforms [17]. In this paper,
we describe and evaluate the implementation of cafc—a
portable, multi-platform, open-source compiler for a sub-
set of the CAF language. The language subset currently
supported by cafc is sufficiently broad that we can generate



code for non-trivial programs, including CAF versions of the
NAS benchmarks [1]. We are working to complete remain-
ing language features. Our aim is to create a high-quality
CAF compiler that can deliver excellent performance for
production codes on a wide range of scalable platforms. cafc
performs source-to-source translation of CAF into Fortran
90 plus calls to a multi-platform library for one-sided com-
munication. Today, cafc automatically applies two opti-
mizations: procedure splitting to improve computation per-
formance and run-time use of non-blocking communication
guided by user hints. To date, we have run code generated
by cafc on several platforms, including Itanium2+Myrinet,
Itanium2+Quadrics, Alpha+Quadrics, Pentium+Ethernet,
SGI Altix and SGI Origin 2000. Here, we evaluate the qual-
ity of cafc-generated code using the NAS benchmarks on Al-
pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadrics
platforms to assess the ability of our multi-platform strat-
egy to deliver high performance. Our results show that even
though cafc currently lacks communication optimization,
with careful coding one can already use it to achieve perfor-
mance that is roughly equal to hand-tuned MPI.

In section 2, we briefly describe the CAF language. In sec-
tion 3, we outline key features of the implementation of cafc.
In Section 4, we describe performance optimizations imple-
mented in cafc. In Section 5, we report results of experi-
ments using versions of the NAS CG, MG, BT, SP and LU
benchmarks to compare the performance of CAF and MPI
and evaluate the effectiveness of cafc’s optimizations. Sec-
tion 6 presents our conclusions and future plans for cafc.

2. CO-ARRAY FORTRAN
CAF is a global address space programming model that sup-
ports SPMD parallel programming through a small set of
language extensions to Fortran 90. An executing CAF pro-
gram consists of a static collection of asynchronous process

images. CAF provides a two-level memory model: data is
explicitly local or remote. This enables CAF programs to
explicitly manage locality by carefully controlling the distri-
bution of data and computation.

In CAF, one declares shared, distributed data—called co-
arrays–using an extension to Fortran 90 declaration syntax.
For example, the declaration integer :: x(n,m)[*] declares
a shared co-array with a n × m integer array local to each
process image. The dimension inside brackets is called a co-
dimension; it is used to index data on remote process images.
The upper bound of the last co-dimension must always be *

to support an arbitrary number of process images. Any co-
array reference that lacks co-dimension subscripts refers to
a process image’s local co-array data. A CAF process image
can directly reference non-local co-array values using an ex-
tension to Fortran 90 syntax for subscripted references. For
instance, process p can read the first column of data in co-
array x from process p+1 with the right-hand side reference
to x(:,1)[p+1]. A co-array can be declared with multiple
co-dimensions; the declaration integer :: x(n,m)[k,*] log-
ically organizes process images into k rows. Co-arrays may
be declared for user-defined types as well as primitive types.
A local section of a co-array may be a singleton instance of
a type (scalar co-array) or an array of type instances.

CAF includes several synchronization primitives; the most

important of them are sync all, which implements a syn-
chronous barrier, and sync team, which is used for barrier-
style synchronization among dynamically-formed teams of
two or more processes. For better performance, we extended
CAF to include support for point-to-point notify and wait
synchronization primitives [3].

Since both remote data access and synchronization are lan-
guage primitives in CAF, they are amenable to compiler-
based optimization. CAF also contains several features that
improve the expressiveness and power of the language in-
cluding dynamic allocation of co-arrays, co-arrays of user-
defined types containing pointers, and fledgling support for
parallel I/O. A more complete description of the CAF lan-
guage can be found elsewhere [13].

3. IMPLEMENTATION STRATEGY
We designed the cafc compiler for CAF with the major
goals of being portable and delivering high-performance on
a plethora of platforms.To support multiple platforms ef-
fectively, cafc performs source-to-source transformation of
CAF code into Fortran 90 code augmented with platform-
specific communication generated using an abstract com-
munication generation interface. Internally, cafc’s abstract
communication generation interface enables it to separate
analysis and optimization of communication from the de-
tails of any particular communication layer. Currently, we
have two instantiations of this interface. One generates
multi-platform code using the Aggregate Remote Memory
Copy Interface (ARMCI) [11] library for one-sided commu-
nication [5]. The second generates code for shared-memory
multiprocessors using loads and stores for communication.
cafc’s source-to-source code generation strategy enables it
to optimize local computation for the target platform using
the best Fortran 90 compiler available. The cafc compiler is
implemented using Open64/sl [15], a version of the Open64
compiler infrastructure [14] that we have modified to sup-
port source-to-source transformation of Fortran 90. Mem-
bers of our research group modified a version of the Open64
infrastructure so that cafc can run natively on multiple ar-
chitectures and operating systems.

3.1 Memory management
To support efficient access to remote co-array data on the
broadest range of platforms, memory for co-arrays is man-
aged by the communication substrate separately from mem-
ory managed conventionally by a Fortran 90 compiler’s lan-
guage run-time system. Having the communication sub-
strate control allocation of co-array memory enables our gen-
erated code to use the most appropriate allocation strategy
for that platform. For instance, on a Myrinet 2000-based
cluster, cafc generates code that uses ARMCI to allocate
data for co-arrays in pinned physical memory; this enables
ARMCI to perform data transfers on the memory directly
using the Myrinet adapter’s DMA engine.

Separately managing co-array data requires special mecha-
nisms for allocating and initializing SAVE and COMMON
co-array variables. When generating ARMCI-based com-
munication, cafc replaces declarations of static co-arrays
with descriptors for the separately allocated co-array stor-
age. (The descriptors themselves are explained in the next
section.)



When cafc-generated code begins execution, it performs a
two-step initialization process. First, it allocates storage
for co-arrays. Second, it initializes procedure-level views of
SAVE and COMMON co-arrays by associating co-array de-
scriptors with the allocated memory and the communication
substrate’s run-time state.

For each procedure containing SAVE co-arrays, cafc gener-
ates an initialization routine that allocates memory for each
SAVE co-array and sets up a descriptor for the co-array. For
COMMON blocks, the process is similar, except that sepa-
rate routines are generated for allocating storage for COM-
MON co-arrays and initializing co-array descriptors. We
explain the handling of COMMON blocks in more detail in
Section 3.3 in the context of an explanation of how cafc sup-
ports sequence association for COMMON co-arrays. When
linking a CAF program, cafc first examines the object files
to collect the names of all storage allocators and co-array
descriptor initializers. Next, cafc synthesizes a global ini-
tializer that calls each allocator and initializer. The global
initializer is called once at program launch before any user-
written code executes.

3.2 Co-array descriptors
For CAF programs to perform well, access to the local por-
tions of co-arrays must be efficient. Since co-arrays are not
natively supported in Fortran 90, cafc must translate ref-
erences to local co-array data into Fortran 90 syntax that
will enable them to access local co-array data with loads and
stores. In cafc’s generated code, co-arrays are represented
using co-array descriptors. Co-array descriptors reside in
the local memory of each process image.

A co-array descriptor structure contains two components.
One component is a Fortran 90 pointer (a deferred shape
array) used to directly access the local portion of the co-
array’s data. The second component is an opaque handle
(an integer of sufficient length to store a pointer) that rep-
resents any underlying state for a co-array maintained by
the communication substrate. For example, to represent
a three-dimensional SAVE or COMMON co-array of real
numbers, cafc generates a descriptor such as the one shown
here:

Type CoArrayDescriptor_Real8_3
integer(ptrkind) :: handle

real(kind=8), pointer:: ptr(:,:,:)
End Type CoArrayDescriptor_Real8_3

When using ARMCI, a co-array’s handle refers to a run-
time representation that currently contains the base virtual
address of the co-array storage for each process image and
the raw size of each process’s local co-array data. Co-array
shape and co-shape information is not represented explicitly
in the run-time layer.

Since co-array data in cafc’s generated code is allocated
by the communication substrate outside control of the For-
tran 90 run-time system, cafc’s run-time library needs the
ability to initialize and manipulate compiler-dependent For-
tran 90 pointer representations (known as dope vectors) on
a variety of target platforms. Currently, cafc’s run-time
library uses a home-grown approach for initializing dope

vectors; eventually, we will update it to use the CHASM
library [16] from Los Alamos National Laboratory for this
purpose.

3.3 Sequence association and reshaping
CAF explicitly supports sequence association between lo-
cal parts of co-arrays in COMMON blocks. Using For-
tran EQUIVALENCE statements to associate co-array and
non-co-array memory is prohibited. Because of this restric-
tion, cafc is able to split a COMMON block containing
both co-array and local variables into two separate COM-
MON blocks: one containing only local variables and the
other containing only co-array variables. The latter co-array

COMMON block is handled as described below.

cafc generates an allocator procedure for each co-array COM-
MON block. An allocator for a co-array COMMON block
reserves a contiguous chunk of storage for the COMMON
block’s set of co-arrays at program launch. Since different
procedures may declare different layouts for the same COM-
MON block, which we call views, cafc synthesizes one view
initializer per procedure per COMMON block. Each view
initializer is invoked once at program launch after storage
allocation to fill in a procedure-private copy of a co-array
descriptor for each co-array in the procedure’s view of the
common block.

3.4 Parameter passing
CAF allows programmers to pass co-arrays as arguments to
procedures. According to CAF specification [12, 13], there
are two types of co-array argument passing: by-value and
by-co-array.

To use by-value parameter passing of a co-array, one wraps
a co-array actual parameter in an additional set of parenthe-
ses, e.g., call foo((ca(1:n,k)[p])). In this case, the CAF
compiler first allocates a local temporary to hold the value
of the remote co-array section (ca(1:n,k) from processor
p) for the duration of the call. Next, it fetches the remote
section from processor p. Then, it invokes the procedure.
Finally, after the procedure returns, the temporary is freed.

The pass by-co-array convention, e.g, call foo(ca(i,k)),
has semantics similar to Fortran’s by-reference parameter
passing convention: only the local address of ca(i,k) is
passed down to the subroutine. Each co-array dummy argu-
ment to a procedure is declared as an explicit-shape co-array
within the procedure. It is illegal to pass a remote co-array
element by-co-array, e.g., call foo(ca(i,k)[p]). It is also
illegal to pass a co-array section to a subroutine since this
might require copy-in-copy-out semantics; this would inter-
fere with memory consistency across procedure calls. cafc

converts each dummy argument P passed by-co-array into
two parameters: L—local portion of the co-array—and H—
the co-array handle. As part of the translation, all local ref-
erences to the dummy argument P within the procedure are
replaced by references to L, while remote references through
dummy argument P use H to communicate data.

We propose an extension to co-array parameter passing that
we found to be useful in the NPB benchmark codes. We
support a pass by-reference convention, in which the callee



receives the local part of a co-array as array argument and
treats it as a regular array. This enables the programmer to
reuse subroutines that compute over arrays for processing
local parts of co-arrays. Fortran 90 interfaces are used to
differentiate what type of calling convention should be used.
An example is shown in Figure 1.

interface
subroutine foo(a)

double precision a[*]
end subroutine foo

subroutine bar(b)
double precision b

end subroutine bar
end interface

double precision x(10,10)[5,*]

...

call foo(x(i,j)) ! pass by-co-array
call bar(x(i,j)) ! pass by-reference

Figure 1: Using Fortran 90 interfaces to specify by-

co-array and by-reference argument passing styles.

When declaring a procedure interface that receives a co-
array by reference, the dummy argument’s shape (and co-
shape) information is omitted. This provides symmetry for
specifying by-reference argument passing for arrays and co-
arrays. A callee receiving a co-array argument declares fresh
shape and co-shape information; this can be used to reshape
a co-array in the callee if desired.

3.5 Supporting multiple co-dimensions
The CAF programming model does not limit the program-
mer to using a flat co-space. Instead, the user can specify
a multidimensional co-space, with the same column-major
convention as regular Fortran code. This feature is of most
use when the processor space of a problem is logically mapped
onto a processor grid. The programmer has the ability to
mold the co-space to fit the logical processor grid. Indexing
of a multi-dimensional organization of remote images is then
straightforward using this feature.

Let us consider a general co-space definition, [lb1 : ub1, lb2 : ub2,
. . . , lbn : ubn, lbn+1 : ∗]. For SAVE and COMMON co-arrays
the co-shape must be specified using exclusively constants.
A remote reference to [i1, i2, . . . , in, in+1] corresponds to
processor image

Pn+1

j=1 (ij − lbj) ∗ mj, where

m1 = 1 (1)

mj =

j−1
Y

k=1

(ubk − lbk + 1) , 2 ≤ j ≤ n + 1 (2)

Section 3.2 explains co-array descriptors. In order to sup-
port co-arrays with multiple co-dimensions, we augment the
co-array metadata used in cafc-generated code with several
co-space variables. For a co-array a with the co-space defi-
nition [lb1 : ub1, lb2 : ub2, . . . , lbn : ubn, lbn+1 : ∗], we added
the following variables:

• a coLB i, for 1 ≤ i ≤ n + 1

• a coUB i, for 1 ≤ i ≤ n

• a ThisImage i, for 1 ≤ i ≤ n + 1

• a CoIndexMultiplier i, for 1 ≤ i ≤ n + 1

• a ThisImageVector

a coLB i, a coUB i and a CoIndexMultiplier i

correspond directly to lbi, ubi and mi. a ThisImage i and
a ThisImageVector are used to precompute the values re-
turned by the CAF intrinsic function this image. Accord-
ing to the CAF specification, this image(a,i) returns the
i-th co-space coordinate for a on the corresponding pro-
cess image. This value is precomputed in a ThisImage i.
this image(a) returns a vector containing the values of
this image(a,i) for all the co-dimensions of co-array a.
This vector is thus precomputed in a ThisImageVector.

We extend the initialization routines mentioned in section 3.1
to set up the co-space metadata variables presented above.
a coLB i, a coUB i are trivially assigned using the co-array
definition. The variables a CoIndexMultiplier i are com-
puted iteratively using the formulas (1) and (2) for m i. To
compute a ThisImage i we use the process image number
returned by this image as follows:

a ThisImage i = mod(div(this image() − 1, mi),
(ubi − lbi + 1)) + lbi, for i = 1..n

a ThisImage i =
div(this image() − 1, mi) + lbi, for i = n + 1

Note that a dead code eliminator would remove unused co-
space variables generated for dummy co-arrays. When gen-
erating code that computes the remote image number, the
CAF compiler replaces the multipliers by constants when-
ever possible.

One immediate consequence of the above scheme is that
we can support co-space reshaping during argument pass-
ing. cafc allows co-shapes of dummy co-array arguments to
be declared using specification expressions rather than only
constants. The co-lower and co-upper bounds variables are
initialized by the corresponding specification expressions;
the rest of the computation to determine the “coIndexMul-
tiplier” variables, the components of “this image” variables
and the “this image vector” is performed as above. This
extension enables programmers to express processing on co-
array arguments with variable co-spaces, leading to more
general code.

3.6 Communication code generation
Communication events expressed with CAF’s bracket no-
tation must be converted into Fortran 90; however, this is
not straightforward because the remote memory may be in
a different address space. Although the language provides
shared-memory semantics, the target architecture may not;
a CAF compiler must provide transformations to bridge this
gap. On a hardware shared memory platform, the transfor-
mation is relatively straightforward since references to re-
mote memory in CAF can be expressed as loads and stores



to shared locations [5]. The situation is more complicated
for cluster-based systems with distributed memory.

To perform data movement on clusters, the compiler must
generate calls to a communication library to access data
that resides on a remote node. Local temporary storage is
sometimes needed for off-processor data. For example, in
the case of a read reference of a co-array on another image,
arr(:)=coarr(:)[p] + ..., a temporary, tmp, is allocated
just prior to the statement to hold the value of the coarr(:)
array section from image p. Then, a call to get data from
image p is issued to the run-time library. The statement is
rewritten as arr(:) = tmp(:) + .... The temporary is
deallocated immediately after the statement. For a write to
a remote image, such as coarr(:)[p1,p2]=..., a temporary
tmp is allocated prior to the remote write statement; the re-
sult of the evaluation of the right-hand side is stored in the
temporary; next, a call to the abstract communication in-
terface is issued to perform the write; finally, the temporary
is deallocated.

When possible, the generated code avoids using unneeded
temporary buffers. For example, when both the left hand-
side and the right-hand side of an assignment are co-arrays,
cafc generates calls to the abstract communication interface
that directly access the involved co-arrays. Besides avoiding
the cost of allocating and copying into the temporary buffer
(and potential cache conflicts), this also enables us to ex-
ploit zero-copy data transfer capabilities of the underlying
communication library, whenever they are supported.

In section 4.2 we present a practical run-time strategy that
enables use of non-blocking communication.

3.7 Synchronization
The original CAF synchronization model used several prim-
itives, such as sync all and sync team. The semantics of
these primitives are described in Section 2. We have imple-
mented sync all by issuing a call to the barrier provided
by ARMCI. The intrinsic sync team(team,[wait]) was im-
plemented by issuing a series of notification to the team
members (specified by the integer vector team), then wait-
ing for notifications from either the team process images (if
the wait argument is absent), or from the wait process im-
ages. These primitives sufficed to fully express the NAS
benchmarks MG, CG, BT, SP and LU.

An issue that arose during our application evaluation was
that using the synchronization primitives provided by CAF
reduced the performance of the applications we studied.
The original CAF specification only supports collective syn-
chronization (sync all and sync team); however, many ap-
plications require only unidirectional, point-to-point syn-
chronization. Using collective synchronization where only
point-to-point synchronization is needed degrades perfor-
mance and in some cases makes programming harder.

In [3], we proposed sync notify(q) and sync wait(p) as
two new primitives for point-to-point synchronization. When
a process executes a sync notify, it initiates notification of
the specified process image and then continues immediately.
When a process executes a sync wait(p), it blocks until it
is notified by the process image p. When a notification from

process p is delivered to process q, all pending communica-
tion events (both PUTs and GETs) that p issued to q before
p initiated the sync notify have completed.

3.8 Intrinsic functions
cafc supports the CAF intrinsic functions: log2 images(),
this image(), num images() and rem images(). To imple-
ment them efficiently, we precompute their values at pro-
gram launch and store them into scalars. At compile time,
calls to these functions are replaced by references to the
corresponding scalars. A more complicated strategy is em-
ployed to support this image relative to a co-array. As
mentioned in section 3.5, we compute the components of
this image once at program initialization for SAVE and
COMMON co-arrays, and once per procedure invocation
for dummy co-arrays. We replace calls to this image(a)

with a reference to a ThisImageVector. We replace calls to
this image(a,i) with a scalar variable if i is a compile-time
constant, and if i is a variable, we use an array reference into
a ThisImageVector.

3.9 Ongoing work
The following features of CAF are currently not supported:
user-defined type co-arrays, allocatable co-arrays, allocat-
able co-array components, triplets in co-dimensions, paral-
lel I/O and remaining Co-array Fortran intrinsic functions.
Ongoing work is aimed at removing these limitations.

4. OPTIMIZATIONS
In this section, we describe two optimizations implemented
in cafc: procedure splitting and support for overlapping
communication with computation and/or other communi-
cation. Finally, we discuss a third optimization—packing
of strided communication—that we only experimented with
manually.

4.1 Procedure splitting
In early experiments comparing the performance of CAF
programs compiled by cafc with the performance of For-
tran+MPI versions of the same programs, we observed that
loops accessing local co-array data in the CAF programs
were often significantly slower than the corresponding loops
in the Fortran+MPI code, even though the source code for
the computational loops were identical. Consider the fol-
lowing lines that are common to both the CAF and For-
tran+MPI versions of the compute rhs subroutine of the
NAS BT benchmark. (NAS BT is described in Section 5.3.)

rhs(1,i,j,k,c) = rhs(1,i,j,k,c) + dx1tx1 * &
(u(1,i+1,j,k,c) - 2.0d0*u(1,i,j,k,c) + &
u(1,i-1,j,k,c)) - &

tx2 * (u(2,i+1,j,k,c) - u(2,i-1,j,k,c))

In both the CAF and Fortran+MPI sources, u and rhs reside
in a single COMMON block. The CAF and Fortran+MPI
versions of the program declare identical data dimensions
for these variables, except that the CAF code adds a single
co-dimension to u and rhs by appending a “[*]” to the end
of its declaration. As described in Section 3.2, cafc rewrites
the declarations of the u and rhs co-arrays with co-array



descriptors that use a deferred-shape representation for co-
array data. References to u and rhs are rewritten to use
Fortran 90 pointer notation as shown here:

rhs%ptr(1,i,j,k,c) = rhs%ptr(1,i,j,k,c) + dx1tx1 * &
(u%ptr(1,i+1,j,k,c) - 2.0d0*u%ptr(1,i,j,k,c) + &
u%ptr(1,i-1,j,k,c)) - &

tx2 * (u%ptr(2,i+1,j,k,c) - u%ptr(2,i-1,j,k,c))

Our experiments showed that the performance differences
we observed between the cafc-generated code and its For-
tran+MPI counterpart result in part from the fact that the
Fortran 90 compilers we use to compile cafc’s generated
code conservatively assume that the pointers rhs%ptr and
u%ptr might alias one another.1 Overly conservative as-
sumptions about aliasing inhibit optimizations.

We addressed this performance problem by introducing an
automatic, demand-driven procedure-splitting transforma-
tion. We split each procedure that accesses SAVE or COM-
MON co-array variables into a pair of outer and inner proce-
dures2. We apply this transformation prior to any compila-
tion of co-array features. Pseudo-code in Figure 2 illustrates
the effect of the procedure-splitting transformation.

subroutine f(a,b)

real a(10)[*], b(100), c(200)[*]
save c

... = c(50) ...
end subroutine f

(a) Original procedure

subroutine f(a,b)

real a(10)[*], b(100), c(200)[*]
save c

interface
subroutine f_inner(a,b,c_arg)

real a[*], b, c_arg[*]

end subroutine f_inner
end interface

call f_inner(a,b,c)
end subroutine f

subroutine f_inner(a,b,c_arg)
real a(10)[*], b(100), c_arg(200)[*]

... = c_arg(50) ...
end subroutine f_inner

(b) Outer and inner procedures after splitting.

Figure 2: Procedure splitting transformation.

The outer procedure retains the same procedure interface as
the original procedure. The outer procedure’s body contains
solely its data declarations, an interface block describing the
inner procedure, and a call to the inner procedure. The in-
ner procedure is created by applying three changes to the
original procedure. First, its argument list is extended to ac-
count for the SAVE and COMMON co-arrays that are now
received as arguments. Second, explicit-shape co-array dec-
larations are added for each additional co-array received as

1Compiling the cafc-generated code for the Itanium2 using
Intel’s ifort compiler (version 8.0) with the -fno-alias flag
removed some of performance difference in computational
loops between the CAF and Fortran+MPI codes.
2Our prototype currently supports procedure splitting only
for subroutines; splitting for functions will be added soon.

an argument. Third, each reference to any SAVE or COM-
MON co-array now also available as a dummy argument is
replaced to use the dummy argument version instead. In
Figure 2, this has the effect of rewriting the reference to
c(50) in f with a reference to c arg(50) in f inner.

After procedure splitting, the translation process for imple-
menting co-arrays, as described in Section 3, is performed.
The net result after splitting and translation is that within
the inner procedure, SAVE and COMMON co-arrays that
are now handled as dummy arguments are represented us-
ing explicit-shape arrays rather than deferred-shape arrays.
Passing these co-arrays as arguments to the inner proce-
dure to avoid accessing SAVE and COMMON co-arrays us-
ing Fortran 90 pointers has several benefits. First, Fortran
compilers may assume that dummy arguments to a proce-
dure do not alias one another; thus, these co-arrays are no
longer assumed to alias one another. Second, within the in-
ner procedure, the explicit-shape declarations for co-array
dummy arguments retain explicit bounds that are otherwise
obscured when using the deferred-shape representation for
co-arrays in the generated code that was described in Sec-
tion 3.2. Third, since local co-array data is referenced in the
inner procedure as an explicit-shape array, it is known to be
contiguous, whereas co-arrays referenced through Fortran 90
pointers may be strided. Our experiments also showed that
knowing that data is contiguous improves software prefetch-
ing (as well as write hinting in Compaq’s Fortran 90 com-
piler). The overall performance benefits of this transforma-
tion are evaluated in Section 5.

4.2 Hints for non-blocking communication
Overlapping communication and computation is an impor-
tant technique for hiding interconnect latency as well as
a means for tolerating asynchrony between communication
partners. However, as CAF was originally described [13], all
communication must complete before each procedure call in
a CAF program. In a study of our initial implementation of
cafc, we found that obeying this constraint and failing to
overlap communication with independent computation hurt
performance [3].

Ideally, a CAF compiler could always determine when it
is safe to overlap communication and computation and to
generate code automatically that does so. However, it is not
always possible to determine at compile time whether a com-
munication and a computation may legally be overlapped.
For instance, if the computation and/or the communica-
tion use indexed subscripts, making a conservative assump-
tion about the values of indexed subscripts may unnecessar-
ily eliminate the possibility of communication/computation
overlap. Also, without whole-program analysis in a CAF
compiler, in the presence of separate compilation one can-
not determine whether it is legal to overlap communication
with a called procedure.

To address this issue, we believe it is useful to provide a
mechanism to enable knowledgeable CAF programmers to
provide hints as to when communication may be overlapped
with computation. Such a mechanism serves two purposes:
it enables overlap when conservative analysis would not,
and it enables overlap in cafc-generated code today be-
fore cafc supports static analysis of potential communica-



tion/computation overlap. While exposing the complexity
of non-blocking communication to users is not ideal, we be-
lieve it is pragmatic to offer a mechanism to avoid perfor-
mance bottlenecks rather than forcing users to settle for
lower performance.

To support communication/computation overlap in code gen-
erated by cafc, we implemented support for three intrinsic
procedures that enable programmers to demarcate the initi-
ation and signal the completion of non-blocking PUTs. We
use a pair of intrinsic calls to instruct the cafc run-time
system to treat all PUT operations initiated between them
as non-blocking. We show this schematically below.

region_id = open_nb_put_region()
...
Put_Stmt_1

...
Put_Stmt_N

...
call close_nb_put_region(region_id)

In our current implementation of the cafc runtime, only one
non-blocking region may be open at any particular point in
a process image’s execution. Each PUT operation that exe-
cutes when a non-blocking region is open is associated with
the region id of the open non-blocking region. It is a run-
time error to close any region other than the one currently
open. Eventually, each non-blocking region initiated must
be completed with the call shown below.

call complete_nb_put_region(region_id)

The completion intrinsic causes a process image to wait at
this point until the completion of all non-blocking PUT op-
erations associated with region id that the process image
initiated. It is a run-time error to complete a non-blocking
region that is not currently pending completion.

Using these hints, the cafc run-time system can readily
exploit non-blocking communication for PUTs and overlap
communication with computation. Overlapping GET com-
munication associated with reads of non-local co-array data
with computation would also be useful. We are currently ex-
ploring how one might sensibly implement support for over-
lapping GET communication with computation, either by
initiating GETs early or delaying computation that depends
upon them.

4.3 Strided vs. contiguous transfers
It is well-known that transferring one large message instead
of many small messages in general is much cheaper on loosely-
coupled architectures. With the column-major layout of co-
arrays, a single language-level communication event, such as
a(i,1:n)[p]=b(j,1:n), might lead to n one-element trans-
fers, which can be very costly. To overcome this performance
hurdle, an effective solution is to pack strided data on the
source, and unpack it on the destination. There can be sev-
eral levels in the runtime environment where the data can
be packed and unpacked to ensure efficient transfers.

In the CAF program This approach requires some effort
on the programmer’s side and can preclude CAF compiler

from optimizing code for tightly-coupled architectures, such
as the Cray X1.

By the CAF compiler In a one-sided communication pro-
gramming paradigm, a major difficulty to pack / unpack
data on this level is to transform one-sided communication
into two-sided. For a PUT, the CAF compiler can easily
generate packing code, but it is difficult to infer where in
the program to insert the unpacking code so the receiving
image unpacks data correctly. Similar complications arise
for GETs. If Active Messages [6] are supported on a target
platform, cafc could potentially generate packing code for
the source process and an unpacking code snippet to execute
on the destination.

In the runtime library This is the most convenient level
in the runtime environment to perform packing / unpacking
of strided communication. An optimized runtime library can
use a cost model to decide if it is beneficial to pack data for a
strided transfer. The ARMCI library used by our CAF com-
piler runtime library already performs packing / unpacking
of data for Myrinet. However, we discovered that it does
not currently do packing for Quadrics. Instead, ARMCI re-
lies on Quadrics driver support for strided transfers, which
deliver poor performance. We are coordinating with the
ARMCI developers regarding this issue.

5. EXPERIMENTAL EVALUATION
In this section we compare the performance of the code cafc
generates from CAF with hand-coded MPI implementations
of the NAS MG, CG, BT, SP and LU parallel benchmark
codes. The NPB codes are widely regarded as useful for
evaluating the performance of compilers on parallel systems.
For our study, we used MPI versions from the NPB 2.3 re-
lease. Sequential performance measurements used as a base-
line were performed using the NPB 2.3-serial release.

For each benchmark, we compare the parallel efficiency of
MPI and cafc-generated code for each benchmark. We com-
pute parallel efficiency as follows. For each parallel version
ρ, the efficiency metric is computed as ts

P×tp(P,ρ)
. In this

equation, ts is the execution time of the original sequen-
tial version implemented by the NAS group at the NASA
Ames Research Laboratory; P is the number of processors;
tp(P, ρ) is the time for the parallel execution on P processors
using parallelization ρ. Using this metric, perfect speedup
would yield efficiency 1.0 for each processor configuration.
We use efficiency rather than speedup or execution time as
our comparison metric because it enables us to accurately
gauge the relative performance of multiple benchmark im-
plementations across the entire range of processor counts.

To evaluate the performance of CAF programs optimized by
cafc we performed experiments on three cluster platforms.
The first platform we used was the Alpha cluster at the
Pittsburgh Supercomputing Center. Each node is an SMP
with four 1GHz processors and 4GB of memory. The oper-
ating system is OSF1 Tru64 v5.1A. The cluster nodes are
connected with a Quadrics interconnect (Elan3). We used
the Compaq Fortran 90 compiler V5.5. The second platform
was a cluster of HP zx6000 workstations interconnected with
Myrinet 2000. Each workstation node contains two 900MHz
Intel Itanium 2 processors with 32KB/256KB/1.5MB of L1/



L2/L3 cache, 4-8GB of RAM, and the HP zx1 chipset. Each
node is running the Linux operating system (kernel version
2.4.18-e plus patches). We used the Intel Fortran compiler
version 8.0 for Itanium as our Fortran 90 back-end com-
piler. The third platform was a cluster of HP Long’s Peak
dual-CPU workstations at the Pacific Northwest National
Laboratory. The nodes are connected with Quadrics QSNet
II (Elan 4). Each node contains two 1.5GHz Itanium2 pro-
cessors with 32KB/256KB/6MB L1/L2/L3 cache and 4GB
of RAM. The operating system is Red Hat Linux (kernel
version 2.4.20). The back-end compiler is the Intel Fortran
compiler version 8.0. For all three platforms we used only
one CPU per node to avoid memory contention.

In the following sections, we briefly describe the NAS bench-
marks used in our evaluation, the key features of their MPI
and CAF parallelizations and compare the performance of
the CAF and MPI implementations on both architectures
studied.

5.1 NAS CG
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Figure 3: Comparison of MPI and CAF parallel

efficiency for NAS CG on Alpha+Quadrics, Ita-

nium2+Myrinet and Itanium2+Quadrics clusters.

In the NAS CG parallel benchmark, a conjugate gradient
method is used to compute an approximation to the small-
est eigenvalue of a large, sparse, symmetric positive definite
matrix [1]. This kernel is typical of unstructured grid com-
putations in that it tests irregular long distance communica-
tion and employs sparse matrix vector multiplication. The
irregular communication requirement of this benchmark is
evidently a challenge for all systems.

Our previous study [3] revealed that the important CAF
optimizations are: communication vectorization, synchro-
nization strength-reduction and data layout management for
co-array and non-coarray data. Here we describe experi-
ments with NAS CG class C (size 150000, 75 iterations).
Figure 3 shows that on the Alpha+Quadrics and the Ita-
nium2+Quadrics clusters our CAF version of CG achieves
comparable performance to that of the MPI version. The
CAF version of CG consistently outperforms the MPI ver-
sion for all the parallel runs on Itanium2+Myrinet.

Experiments with CG have showed that using PUTs instead
of GETs on the Quadrics platforms yields performance im-
provements of up to 8% for large scale jobs on the Alpha +
Quadrics platform and up to 3% on the Itanium2+Quadrics
platform.

5.2 NAS MG
The MG multigrid kernel calculates an approximate solution
to the discrete Poisson problem using four iterations of the
V-cycle multigrid algorithm on a n× n× n grid with peri-
odic boundary conditions [1]. The communication is highly
structured and goes through a fixed sequence of regular pat-
terns.
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Figure 4: Comparison of MPI and CAF parallel

efficiency for NAS MG on Alpha+Quadrics, Ita-

nium2+Myrinet and Itanium2+Quadrics clusters.

Our previous study [3] revealed that the important CAF
optimizations for MG are: communication vectorization,
synchronization strength-reduction and conversion of GETs
into PUTs. Figure 4 illustrates that our CAF version of
NAS MG class C (5123, 20 iterations) achieves performance
superior to that of the MPI version on all three platforms.
On the Alpha+Quadrics cluster, our CAF version outper-
forms MPI by up to 16% (11% on 128 processors); on the
Itanium2+Myrinet cluster, the CAF version of MG exceeds
the MPI performance by up to 30% (3% on 64 processors);
on the Itanium2+Quadrics cluster, MG CAF surpasses MPI
by up to 18% (7% on 128 processors). The best-performing
CAF version uses procedure splitting and non-blocking com-
munication.

5.3 NAS SP and BT
As described in a NASA Ames technical report [1], the NAS
benchmarks BT and SP are two simulated CFD applica-
tions that solve systems of equations resulting from an ap-
proximately factored implicit finite-difference discretization
of three-dimensional Navier-Stokes equations. The princi-
pal difference between the codes is that BT solves block-
tridiagonal systems of 5x5 blocks, whereas SP solves scalar
penta-diagonal systems resulting from full diagonalization
of the approximately factored scheme [1]. SP and BT use
skewed block distribution called multipartitioning [1, 10].
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Figure 5: Comparison of MPI and CAF parallel

efficiency for NAS BT on Alpha+Quadrics, Ita-

nium2+Myrinet and Itanium2+Quadrics clusters.
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Figure 6: Comparison of MPI and CAF paral-

lel efficiency for NAS SP on Alpha+Quadrics, Ita-

nium2+Myrinet and Itanium2+Quadrics clusters.

The MPI implementation of NAS BT and SP attempts to
hide communication latency by overlapping communication
with computation, using non-blocking communication prim-
itives. We explained our approach to implement CAF ver-
sions of BT and SP in our previous study [3]. The high-
payoff code transformations were communication vectoriza-
tion and trade-off between communication buffer space and
amount of necessary synchronization. This study discov-
ered that for some architectures the code shape of the input
CAF program and the Fortran 90 translation is important
for achieving high-performance.

The performance achieved by the CAF versions of BT class
C (1623, 200 iterations) and SP class C (1623, 400 iterations)
are presented in Figures 5 and 6. On the Alpha+Quadrics
cluster, the performance of the CAF version of BT is compa-
rable to that of the MPI version. On the Itanium2+Myrinet
cluster, CAF BT outperforms the MPI versions by as much
as 8% (and is comparable for 64 processors); on the Ita-

nium2+Quadrics cluster, our CAF version of BT exceeds
the MPI performance by up to 6% (3% on 121 processors).
The CAF versions of SP is outperformed by MPI on the Al-
pha+Quadrics cluster by up to 8% and Itanium2+Quadrics
clusters by up to 9%. On the Itanium2+Myrinet cluster,
SP CAF exceeds the performance of MPI CAF by up to 7%
(7% on 64 processors). The best performing CAF versions
of BT and SP use procedure splitting, packed PUTs and
non-blocking communication generation.

5.4 NAS LU
LU solves the 3D Navier-Stokes equation as do SP and BT.
LU implements the solution by using a Successive Over-
Relaxation (SSOR) algorithm which splits the operator of
the Navier-Stokes equation into a product of lower-triangular
and upper-triangular matrices (see [1] and [7])). The algo-
rithm solves five coupled nonlinear partial differential equa-
tions, on a 3D logically structured grid, using an implicit
pseudo-time marching scheme. The MPI code requires a
power-of-two number of processors. The problem is parti-
tioned on processors by repeatedly halving the grid in the
dimensions x and y, alternately, until all power-of-two pro-
cessors are assigned. This results in vertical pencil-like grid
partitions on processors. The computations perform a sweep
starting with one corner in a z plane to the opposite corner of
the same z-plane; next it proceeds to the following z-plane.
The communication of partition boundaries occurs after the
computation is complete on all diagonals that contact an
adjacent partition. This method effectively performs a di-
agonal pipelining and is called “a wavefront” by its authors;
it has the potential of generating a relatively large number
of small messages of 5 words each.
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Figure 7: Comparison of MPI and CAF parallel

efficiency for NAS LU on Alpha+Quadrics, Ita-

nium2+Myrinet and Itanium2+Quadrics clusters.

Our CAF implementation follows closely the MPI imple-
mentation. We have transformed into co-arrays the grid
parameters, the field variables and residuals, the output
control parameters and the Newton-Raphson iteration con-
trol parameters. Local computation is similar to that of
MPI. The various exchange procedures use co-arrays with
two co-dimensions in order to naturally express communi-
cation with neighbors in four directions: north, east, south
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Figure 8: Parallel efficiency for several CAF versions

of NAS BT on an Alpha+Quadrics cluster.
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Figure 9: Parallel efficiency for several CAF versions

of NAS BT on an Itanium2+Myrinet cluster.

and west. For example, a processor with the co-indices
[row,col] will send data to [row+1,col] when it needs to
communicate to the south neighbor and to [row,col-1] for
the west neighbor.

The experimental results for the MPI and CAF versions of
LU class C (1623, 250 iterations) on all platforms are pre-
sented in Figure 7. On the Alpha+Quadrics cluster the
MPI version outperforms the CAF version by up to 9%; on
the Itanium2+Myrinet cluster, MPI LU exceeds the per-
formance of CAF LU by as much as 13%. On the Ita-
nium2+Quadrics cluster, the CAF and MPI versions of LU
achieve comparable performance. The best performing CAF
version of LU uses packed PUTs and procedure splitting.

5.5 Impact of optimizations
In section 4, we describe several optimizations to improve
the performance of CAF programs: procedure splitting, is-
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Figure 10: Parallel efficiency for several CAF ver-

sions of NAS LU on an Alpha+Quadrics cluster.
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Figure 11: Parallel efficiency for several CAF ver-

sions of NAS LU on an Itanium2+Myrinet cluster.

suing of non-blocking communication and communication
packing. To experimentally evaluate the impact of each op-
timization, we implemented several versions of each of the
NPB benchmarks presented above. In Figures 8 and 9, we
present results on the Alpha+Quadrics and the Itanium2
+ Myrinet clusters for the MPI version of BT and the fol-
lowing BT CAF versions: strided PUTs, strided PUTs with
procedure splitting, packed PUTs, packed PUTs with pro-
cedure splitting, packed non-blocking PUTs and packed non-
blocking PUTs with procedure splitting. In Figures 10 and 11,
we present results on the Alpha+Quadrics and the Itanium2
+ Myrinet clusters for the MPI version of LU and the fol-
lowing CAF versions: strided PUTs, strided PUTs with pro-
cedure splitting, packed PUTs and packed PUTs with pro-
cedure splitting. For both BT and LU the communication
packing is performed at source level.

For BT, procedure splitting is a high-impact transforma-
tion: it improves the performance by 13–20% on the Al-
pha+Quadrics cluster and by 42–60% on the Itanium2 +
Myrinet cluster. For LU, procedure splitting yields an im-



provement of 15–33% on Alpha+Quadrics and 29–42% on
Itanium2 + Myrinet. The CAF versions of BT and LU ben-
efit significantly from the procedure splitting optimization
because SAVE and COMMON co-arrays are heavily used in
local computations. For benchmarks such as CG, MG and
SP, where co-arrays are used solely for data movement (by
packing data, sending it and unpacking it on the destina-
tion) the benefits of the procedure splitting are modest. In
addition, procedure splitting doesn’t degrade performance
for any of the programs we used in our experiments.

For BT, non-blocking PUTs improved performance by up
to 2% on the Alpha+Quadrics platform, by up to 7% on
the Itanium2+Myrinet platform and by up to 5% on the
Itanium2+Quadrics platform. For MG, non-blocking PUTs
improved performance by up to 3% on all platforms. For
SP, non-blocking communication improved performance as
much as 8% on Itanium2+Myrinet, though only up to 2%
on the Quadrics clusters.

Packing data and performing contiguous rather than strided
PUTs yields a performance improvment on both Quadrics
platforms, on which the ARMCI library does not provide
automatic packing. On the Myrinet platform, ARMCI sup-
ports data packing for communication, and thus there is no
improvement from packing data at source level in CAF ap-
plications. For BT CAF, the execution time is improved up
to 31% on the Alpha+Quadrics cluster and up to 30% on
the Itanium2+Quadrics cluster. For LU CAF, the improve-
ment is up to 24% on the Alpha+Quadrics cluster and up
to 37% on the Itanium2+Quadrics cluster.

Our best guess for why the efficiencies of applications we
studied degrade more sharply on Itanium2 platforms as the
number of processors is increased is that the Itanium2 pro-
cessors are much faster than the EV68 processors and thus
the applications become communication bound earlier.

6. CONCLUSIONS
Co-array Fortran’s global address space programming model
simplifies the development of single-program-multiple-data
parallel programs by shifting the burden for choreograph-
ing and optimizing communication from developers to com-
pilers. Since the details of communication implementation
are not embedded in Co-array Fortran programs, we believe
that Co-array Fortran holds promise as a high performance
programming model suitable for a wide range of platforms.

This paper describes the first implementation of an open-
source, multiplatform compiler for CAF that generates code
well-suited for today’s commodity clusters. Our experiments
with cafc-generated code for the NAS MG, CG, SP, BT, and
LU benchmarks on several cluster architectures show that
cafc delivers performance comparable to that of MPI. Our
experiments showed that packed communication, procedure
splitting and non-blocking communication are necessary to
deliver high performance across a range of applications and
platforms. The cafc compiler automatically applies two of
these optimizations: procedure splitting and run-time use
of non-blocking communication guided by user hints. How-
ever, without compile-time optimization of communication,
including vectorization and aggregation, we have not yet re-
alized our vision of supporting portable high-performance

applications written in a natural style. A fundamental les-
son is that all of these transformations are important for
achieving high-performance on a wide range of codes and
architectures.

Future work will focus on completing the CAF language im-
plementation, communication optimization and harnessing
the performance of emerging extreme-scale systems, such as
IBM’s Blue Gene.
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