
MPI

• Portable and widely used

• The programmer has explicit control
over data locality and communication

• Using MPI can be difficult and error
prone

• Most of the burden for communication
optimization falls on application
developers; compiler support is
underutilized

An Emerging, Portable Co-array Fortran Compiler
for High-Performance Computing

John Mellor-Crummey, Yuri Dotsenko, Cristian Coarfa, Daniel Chavarría-Miranda
 {johnmc, dotsenko, ccristi, danich}@cs.rice.edu

HPF

• The compiler is responsible for
communication and data locality

• Annotated sequential code (semiautomatic
parallelization)

• Requires heroic compiler technology

• The model limits the application
paradigms: extensions to the standard are
required for supporting irregular
computation

Programming Models
for High-Performance Computing

Simple and expressive models for
high performance programming

based on extensions to widely used languages

• Performance: users control data and computation
partitioning

• Portability: same language for SMPs, MPPs, and clusters

• Programmability: global address space for simplicity

Co-Array Fortran Language Finite Element Example

Co-Array Fortran

A sensible
alternative to

these extremes

• SPMD process images
– number of images fixed during execution
– images operate asynchronously

• Both private and shared data
– real a(20,20) private: a 20x20 array in each image
– real a(20,20) [*] shared: a 20x20 array in each image

• Simple one-sided shared memory communication

– x(:,j:j+2) = a(r,:) [p:p+2] copy rows from p:p+2 into local
columns

• Flexible synchronization

– sync_team(team [,wait])
• team = a vector of process ids to synchronize with
• wait = a vector of processes to wait for (a subset of team)

• Pointers and dynamic allocation

• Parallel I/O

subroutine assemble(start, prin, ghost, neib, x)
 integer :: start(:), prin(:), ghost(:), neib(:)
 integer :: k1, k2, p
 real :: x(:) [*]
 call sync_all(neib)
 do p = 1, size(neib) ! Update from ghost regions
 k1 = start(p); k2 = start(p+1)-1
 x(prin(k1:k2)) = x(prin(k1:k2)) +
 x(ghost(k1:k2)) [neib(p)]
 enddo
 call sync_all(neib)
 do p = 1, size(neib) ! Update the ghost regions
 k1 = start(p); k2 = start(p+1)-1
 x(ghost(k1:k2)) [neib(p)] = x(prin(k1:k2))
 enddo
 call sync_all
end subroutine assemble

Co-Array Fortran enables simple expression of
complicated communication patterns

. . .
real(8) a(0:N+1,0:N+1)[*]
me = this_image()
. . .
! ghost cell update
a(1:N,N+1)[left(me)] = a(1:N,0)
. . .

 Implementation Status

Research Focus

• Enhancements to Co-Array Fortran model
• Point-to-point one-way synchronization

• Hints for matching synchronization events

• Collective operation intrinsics

• Split-phase primitives

• Synchronization strength-reduction

• Communication vectorization

• Platform-driven communication optimization
• Transform as useful from 1-sided to two-sided and
collective communication

• Generate both fine-grain load/store and calls to
communication libraries as necessary

• Multi-model code for hierarchical architectures

• Convert Gets into Puts

• Compiler-directed parallel I/O with UIUC

• Interoperability with other programming models

• Source-to-source code generation for wide portability

• Open source compiler will be available

• Working prototype for a subset of the language

• Current compiler implementation performs no
optimization

– each co-array access is transformed into a get/put operation
at the same point in the code

• Code generation for the widely-portable ARMCI library
for one-sided communication

• Front-end based on production-quality Open64 front
end, modified to support source-to-source compilation

PUT Translation Example

Explicit Data and Computation Partitioning

integer A(10,10)[*]

if (this_image() .lt. num_images()) then
 A(1:3,1:5)[this_image()+1] = A(1:3,6:10)

A(10,10)

Image 1

A(10,10)

image 2

A(10,10)

image N

A(10,10)

image 1

A(10,10)

image 2

A(10,10)

image N

Early Performance Results

NAS MG class C

NAS BT class C

type CafHandleReal8
integer:: handle
real(8):: ptr(:,:)

end type
type(CafHandleReal8) a_caf
. . .
allocate(cafBuffer_1%ptr(1:N,0:0))
cafBuffer_2%ptr => a_caf%ptr(1:N,N+1:N+1)
cafBuffer_1%ptr = a_caf%ptr(1:N,0)
call CafArmciPutS(a_caf%handle,left(me),
cafBuffer_1, cafBuffer_2)
deallocate(cafBuffer_1%ptr)
. . . IA64 / Myrinet 2000IA64 / Myrinet 2000

