
An Evaluation of Global Address Space Languages:
Co-Array Fortran and Unified Parallel C∗

Cristian Coarfa
ccristi@cs.rice.edu

Yuri Dotsenko
dotsenko@cs.rice.edu

John Mellor-Crummey
johnmc@cs.rice.edu

Rice University
Houston, TX

François Cantonnet
fcantonn@gwu.edu

Tarek El-Ghazawi
tarek@gwu.edu

Ashrujit Mohanti
ashrujit@gwu.edu

Yiyi Yao
yyy@gwu.edu

George Washington University
Washington, DC

Daniel Chavarrı́a-Miranda
daniel.chavarria@pnl.gov

Pacific Northwest National Laboratory
Richland, WA

ABSTRACT
Co-array Fortran (CAF) and Unified Parallel C (UPC) are
two emerging languages for single-program, multiple-data
global address space programming. These languages boost
programmer productivity by providing shared variables for
inter-process communication instead of message passing. How-

∗This work was supported in part by the Department of
Energy under Grant DE-FC03-01ER25504/A000, the Los
Alamos Computer Science Institute (LACSI) through LANL
contract number 03891-99-23 as part of the prime contract
(W-7405-ENG-36) between the DOE and the Regents of the
University of California, Texas Advanced Technology Pro-
gram under Grant 003604-0059-2001, and Compaq Com-
puter Corporation under a cooperative research agreement.
The computations were performed in part on an Itanium
cluster purchased with support from the NSF under Grant
EIA-0216467, Intel and Hewlett Packard, and on the Na-
tional Science Foundation Terascale Computing System at
the Pittsburgh Supercomputing Center. This research was
performed in part using the Molecular Science Computing
Facility (MSCF) in the William R. Wiley Environmental
Molecular Sciences Laboratory, a national scientific user fa-
cility sponsored by the U.S. Department of Energy’s Office
of Biological and Environmental Research and located at the
Pacific Northwest National Laboratory. Pacific Northwest is
operated for the Department of Energy by Battelle.

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

ever, the performance of these emerging languages still has
room for improvement. In this paper, we study the perfor-
mance of variants of the NAS MG, CG, SP, and BT bench-
marks on several modern architectures to identify challenges
that must be met to deliver top performance. We compare
CAF and UPC variants of these programs with the original
Fortran+MPI code. Today, CAF and UPC programs deliver
scalable performance on clusters only when written to use
bulk communication. However, our experiments uncovered
some significant performance bottlenecks of UPC codes on
all platforms. We account for the root causes limiting UPC
performance such as the synchronization model, the com-
munication efficiency of strided data, and source-to-source
translation issues. We show that they can be remedied with
language extensions, new synchronization constructs, and,
finally, adequate optimizations by the back-end C compil-
ers.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Concur-
rent programming structures; D.3.2 [Language Classifi-

cation]: Concurrent, distributed, and parallel languages;
D.3.4 [Processors]: Compilers, Code generation, Optimiza-
tion, Retargetable compilers, Run-time environments; C.4
[Performance of Systems]: Performance attributes

General Terms
Languages, Performance, Experimentation, Measurement

Keywords
Co-array Fortran, CAF, Unified Parallel C, UPC, Parallel
languages, Global address space languages, Compilers, Per-
formance, Scalability.

1. INTRODUCTION
Writing shared-memory parallel programs is widely viewed

as simpler than writing message-passing programs. How-
ever, today message passing is the undisputed leader for
achieving performance, scalability and portability on paral-
lel systems in general, and commodity clusters in particu-
lar. The principal obstacle for scalability and performance
of shared-memory parallel programming models has been
their inability to exploit locality effectively.

For this reason, there has been considerable interest in
developing locality-aware paradigms for shared-memory par-
allel programming. The Partitioned Global Address Space
(PGAS) model for Single Program Multiple Data (SPMD)
parallel programming was developed to address this issue.
In the PGAS model, multiple SPMD threads (or processes)
share a part of their address space. However, the shared
space is partitioned and a portion of it is local to each thread
or process. Programs using the PGAS model can exploit lo-
cality by having each thread or process principally compute
on data that is local to it.

Unified Parallel C [11] and Co-Array Fortran [16] are two
programming languages based on the PGAS model. UPC
and CAF both aim to support locality-aware shared mem-
ory parallel programming, but they differ in important de-
sign choices. For example, UPC provides the abstraction of
a “flat” address space in which any element in a distributed
data structure can be accessed uniformly (with some over-
head). In contrast, processor boundaries of distributed ar-
rays are explicit in CAF and a special syntactic construct is
used to access remote memory.

Compilers for CAF and UPC generally use a source-to-
source compilation strategy, in which they translate pro-
grams into Fortran 90 and C programs augmented with
communication code. This approach leverages the capabil-
ities of sequential language compilers to efficiently map the
transformed code into highly-optimized machine code. For
PGAS languages to be efficient, high-level parallel language
constructs, such as pointers to remote memories and remote
array sections, must be carefully compiled into constructs in
the target sequential language with an understanding of the
translation’s implications for performance.

This paper presents a comparative study of the relative
performance of UPC and CAF. To assess the ability of these
languages to deliver performance, we study a subset of the
NAS Parallel Benchmarks [1] implemented in each language.
For reference, we also compare the performance of UPC and
CAF variants of these benchmarks to their standard imple-
mentations written in Fortran+MPI. The goal of this study
is to determine which features are necessary to enable PGAS
parallel programming languages to deliver high performance
on a range of target platforms.

Section 2 briefly describes the CAF and UPC languages
along with the compilers that we used in our study. Section 3
presents our experimental evaluation of the CAF and UPC
programming models and compilers using the NAS parallel
benchmarks. Section 4 summarizes the conclusions we draw
from our study.

2. BACKGROUND

2.1 Co-array Fortran
Co-Array Fortran extends Fortran 95 with a few language

constructs to support SPMD parallel programming. An ex-
ecuting CAF program consists of a static collection of asyn-
chronous process images. As in MPI programs, CAF pro-
grams explicitly manage data locality and partitioned com-
putation.

CAF provides a partitioned global address space. Dis-
tributed data is declared using a natural extension to For-
tran 90 syntax. For example, the declaration integer ::

a(n,m)[*] declares a shared co-array a with n × m integers
local to each process image. Instead of explicitly coding
message exchanges to access data belonging to other pro-
cesses, a CAF program can directly reference non-local val-
ues using an extension to Fortran 90 syntax for subscripted
references. For instance, process p can read the first col-
umn of co-array a from process p+1 with the right-hand side
reference to a(:,1)[p+1]. CAF has a primitive for a syn-
chronous barrier among all or a subset of process images.
A more complete description of the CAF language can be
found elsewhere [16].

In previous studies [6, 7], we identified a few weaknesses
of the original CAF language specification that can reduce
the performance of CAF codes. In particular, CAF’s orig-
inal team-based synchronization requires collective opera-
tions that are often not necessary; stronger synchronization
typically reduces performance. Also, the original CAF spec-
ification prescribes the use of memory fences before and af-
ter each procedure call; this can inhibit overlapping com-
munication with computation. In response, we proposed re-
finements to CAF that enable these sources of performance
degradation to be avoided. In [6], we proposed extending
the CAF model with unidirectional point-to-point synchro-
nization primitives: sync notify and sync wait. These
primitives offer a high-performance alternative to collective
team-based synchronization. In [7] we proposed a small set
of directives to help exploit non-blocking communication in
CAF programs; these directives help programmers overlap
communication with computation.

2.2 The Rice CAF compiler
The Rice CAF compiler, cafc [20], was designed with the

major goals of being portable and delivering high-performance
on a multitude of platforms. Ideally, a programmer will
write a CAF program once in a natural style and cafc

will adapt it for high performance on the target platform
of choice.

To achieve this goal, cafc performs source-to-source trans-
formation of CAF code into Fortran 90 code augmented with
communication operations. For communication, cafc typi-
cally generates calls to ARMCI’s [15] one-sided communica-
tion primitives; however, for shared memory systems cafc

can generate code that uses load and store operations for
communication. cafc is based on Open64/sl [18], a version
of the Open64 [17] compiler infrastructure that was mod-
ified to support source-to-source transformation of Fortran
90 and CAF.

2.3 Unified Parallel C
UPC is an explicitly parallel extension of ISO C that sup-

ports a global address space programming model for writ-
ing SPMD parallel programs. In the UPC model, SPMD
threads share a part of their address space. The shared
space is logically partitioned into fragments, each with a
special association (affinity) to a given thread. UPC dec-

larations give programmers control over the distribution of
data across the threads; they enable a programmer to as-
sociate data with the thread primarily manipulating it. A
thread and its associated data are typically mapped by the
system into the same physical node. Being able to associate
shared data with a thread makes it possible to exploit lo-
cality. In addition to shared data, UPC threads can have
private data as well; private data is always co-located with
its thread.

UPC’s support for parallel programming consists of a few
key constructs. UPC provides the upc forall work-sharing
construct. At run time, upc forall is responsible for as-
signing independent loop iterations to threads so that it-
erations and the data they manipulate are assigned to the
same thread. UPC adds several keywords to C that enable
it to express a rich set of private and shared pointer con-
cepts. UPC supports dynamic shared memory allocation.
The language offers a range of synchronization and memory
consistency control constructs. Among the most interesting
synchronization concepts in UPC is the non-blocking bar-
rier, which allows overlapping local computation and inter-
thread synchronization. Parallel I/O [9] and collective oper-
ation library specifications [21] have been recently designed
and will be soon integrated into the formal UPC language
specifications. Also, [3] proposes a set of UPC extensions
that enables efficient strided data transfers and overlap of
computation and communication.

2.4 Unified Parallel C Compilers
The Berkeley UPC (BUPC) compiler [5] performs source-

to-source translation. It first converts UPC programs into
platform-independent ANSI-C compliant code, tailors the
generated code to the the target architecture (cluster or
shared memory), and augments it with calls to the Berkeley
UPC Runtime system, which in turn, invokes a lower level
one-sided communication library called GASNet [2]. The
GASNet library is optimized for a variety of target archi-
tectures and delivers high performance communication by
applying communication optimizations such as message co-
alescing and aggregation as well as optimizing accesses to
local shared data. We used both the 2.0.1 and 2.1.0 ver-
sions of the Berkeley UPC compiler in our study.

The Intrepid UPC compiler [12] is based on the GCC
compiler infrastructure and supports compilation to shared
memory systems including the SGI Origin, Cray T3E and
Linux SMPs. The GCC-UPC compiler used in our study
is version 3.3.2.9, with the 64-bit extensions enabled. This
version incorporates inlining optimizations and utilizes the
GASNet communication library for distributed memory sys-
tems.

3. EXPERIMENTAL EVALUATION
To assess the ability of PGAS language implementations

to deliver performance, we compare the performance of CAF,
UPC and Fortran+MPI implementations of the NAS Par-
allel Benchmarks (NPB) MG, CG, SP and BT. The NPB
codes are widely used for evaluating the performance of
parallel compilers and parallel systems. For our study, we
used MPI codes from the NPB 2.3 release. Sequential per-
formance measurements used as a baseline were performed
using the Fortran-based NPB 2.3-serial release. The CAF
and UPC benchmarks were derived from the correspond-
ing NPB-2.3 MPI implementations; they use essentially the

same algorithms as the corresponding MPI versions. To
achieve higher performance, we experimented with UPC ex-
tensions for strided and asynchronous communication [3]
and with CAF extensions for point-to-point synchroniza-
tion and non-blocking communication [7]. We evaluated the
benefits of point-to-point synchronization in UPC programs
for large number of processors; to the best of our knowledge
this is the first study of point-to-point synchronization for
UPC codes.

3.1 NAS Parallel Benchmarks
NAS MG. The MG multigrid kernel calculates an approx-
imate solution to the discrete Poisson problem using four
iterations of the V-cycle multigrid algorithm on a n × n × n

grid with periodic boundary conditions [1]. MG’s commu-
nication is highly structured and repeats a fixed sequence of
regular patterns.
NAS CG. The CG benchmark uses a conjugate gradient
method to compute an approximation to the smallest eigen-
value of a large, sparse, symmetric positive definite ma-
trix [1]. This kernel is typical of unstructured grid compu-
tations in that it tests irregular long distance communica-
tion and employs sparse matrix vector multiplication. The
irregular communication employed by this benchmark is a
challenge for clusters.
NAS SP and BT. The NAS BT and SP benchmarks
are two simulated CFD applications that solve systems of
equations resulting from an approximately factored implicit
finite difference discretization of three-dimensional Navier-
Stokes equations [1]. The principal difference between the
codes is that BT solves block-tridiagonal systems of 5x5
blocks, whereas SP solves scalar penta-diagonal systems re-
sulting from full diagonalization of the approximately fac-
tored scheme [1]. SP and BT use a skewed-cyclic block dis-
tribution known as multipartitioning [1, 14].

3.2 Experimental platforms
Our experiments studied the performance of the MG, CG,

BT and SP benchmarks on four architectures.
The first platform is a cluster of 92 HP zx6000 worksta-

tions interconnected with Myrinet 2000. Each workstation
node contains two 900MHz Intel Itanium 2 processors with
32KB/256KB/1.5MB of L1/L2/L3 cache, 4-8GB of RAM,
and the HP zx1 chipset. Each node is running the Linux
operating system (kernel version 2.4.18-e plus patches). We
used the Intel compilers V8.0 as our back-end compiler and
the Berkeley UPC compiler V2.1.01 with the gm conduit.

The second platform was the Lemieux Alpha cluster at
the Pittsburgh Supercomputing Center. Each node is an
SMP with four 1GHz processors and 4GB of memory. The
operating system is OSF1 Tru64 v5.1A. The cluster nodes
are connected with a Quadrics interconnect (Elan3). We
used the Compaq Fortran 90 compiler V5.5 and Compaq
C/C++ compiler V6.5 as well as the Berkeley UPC compiler
V2.0.12 using the elan conduit.

The other two platforms are non-uniform memory access
(NUMA) architectures: an SGI Altix 3000 and an SGI Ori-
gin 2000. The Altix 3000 has 128 Itanium2 1.5GHz pro-
cessors with 6MB L3 cache, and 128GB RAM, running the
Linux64 OS with the 2.4.21 kernel, Intel compilers V8.0, and

1back-end compiler options: -override limits -O3 -g -tpp2
2back-end compiler options: -fast -O5 -tune host -intrinsics

the Berkeley UPC compiler V2.1.03 using the shmem con-
duit. The Origin 2000 has 32 MIPS R10000 processors with
4MB L2 cache and 16 GB RAM, running IRIX64 V6.5, the
MIPSpro Compilers V7.4 and the Berkeley UPC compiler
V2.0.14 using the smp conduit.

3.3 Experimental Methodology
For each application and platform, we selected the largest

problem size for which all the MPI, CAF, and UPC versions
ran and verified within the architecture constraints (mainly
memory). We do not report performance results for NAS
MG on the Alpha+Quadrics platform because we were not
able to collect reliable data for UPC.

For each benchmark, we compare the parallel efficiencies
of the CAF, UPC and MPI versions. We compute parallel
efficiency as follows. For each parallel version ρ, the effi-
ciency metric is computed as ts

P×tp(P,ρ)
. In this equation, ts

is the execution time of the original Fortran sequential ver-
sion implemented by the NAS group at the NASA Ames
Research Laboratory; P is the number of processors; tp(P, ρ)
is the time for the parallel execution on P processors using
parallelization ρ. Using this metric, perfect speedup would
yield efficiency 1.0. We use efficiency rather than speedup or
execution time as our comparison metric because it enables
us to accurately gauge the relative performance of multi-
ple benchmark implementations across the entire range of
processor counts5.

3.4 NAS MG
Figures 1 (a) and (b) present the performance of classes

A (problem size 2563) and C (problem size 5123) on an
Itanium2 cluster with a Myrinet 2000 interconnect. The
MPI curve is the baseline for comparison as it represents
the performance of the NPB-2.3 official benchmark. The
CAF curve represents the efficiency of the fastest code vari-
ant written in Co-Array Fortran and compiled with cafc.
To achieve high performance, the CAF code uses commu-
nication vectorization, synchronization strength reduction,
procedure splitting and non-blocking communication, as de-
scribed elsewhere [6, 7]. The CAF-barrier version is similar
to CAF, but uses barriers for synchronization.

In Figure 1, the BUPC, BUPC-restrict, BUPC-strided,
and BUPC-p2p curves display the efficiency of NAS MG
coded in UPC and compiled with the BUPC compiler. The
UPC implementation uses a program structure similar to
that of the MPI version. All UPC versions declare local
pointers for each level of the grid for more efficient access to
local portions of shared arrays. The BUPC-restrict, BUPC-
p2p and BUPC-strided differ from BUPC by declaring these
local pointers as restricted, using the C99 restrict keyword
to improve alias analysis in the back-end C compiler. BUPC
and BUPC-restrict use barriers for interprocessor synchro-
nization; BUPC-p2p and BUPC-strided use point-to-point

3back-end compiler options: -override limits -O3 -g -tpp2
4back-end compiler options: -64 -mips4 -DMPI -O3
5There are also sequential C implementations of the NAS
MG, CG, SP, and BT benchmarks that employ the same al-
gorithms as the original Fortran versions. The performance
of the C versions of SP and CG is similar to that of the origi-
nal Fortran versions. The C version of BT is up to two times
slower than its Fortran variant. The C version of MG allo-
cates each row in the multigrid data structure as a separate
object in memory; this degrades performance by as much as
a factor of seven compared to its Fortran counterpart.

synchronization implemented at the UPC language level.
BUPC, BUPC-restrict and BUPC-p2p use upc memput for
bulk data transfers; BUPC-strided uses UPC extensions to
perform bulk transfers of strided data.

The results show that CAF has an efficiency compara-
ble to that of MPI; the CAF-barrier performance is similar
to that of MPI for small numbers of CPUs, but the per-
formance degrades for larger numbers of processors. The
original BUPC version is as much as seven times slower
than MPI and CAF. We identified three major causes for
this performance difference. The principal cause is lower
scalar performance due to source-to-source translation is-
sues, such as failing to convey aliasing information to the
back-end compiler and inefficient code generated for lin-
earized indexing of multidimensional data in UPC. Second,
using barrier synchronization when point-to-point synchro-
nization suffices degrades performance and scalability. Third,
communicating non-contiguous data in UPC is currently ex-
pensive.

Source-to-source translation challenges. The fol-
lowing code fragment is for the residual calculation, resid,
which is computationally intensive. MPI, CAF, and CAF-
barrier use multidimensional arrays to access private data.

subroutine resid(u,v,r,n1,n2,n3,...)

integer n1,n2,n3
double precision u(n1,n2,n3),v(n1,n2,n3),r(n1,n2,n3),a(0:3)

! loop nest accounting for 33% of total walltime
r(i1,i2,i3) = v(i1,i2,i3) - a(0) * u(i1,i2,i3) - ...

...
end subroutine resid

The corresponding routine in the UPC versions uses C
pointers to access the local parts of shared arrays as shown
below.

typedef struct sh_arr_s sh_arr_t;
struct sh_arr_s {

shared [] double *arr;
};

void resid(shared sh_arr_t *u, shared sh_arr_t *v,
shared sh_arr_t *r, int n1, int n2, int n3, ...) {

#define u(iz,iy,ix) u_ptr[(iz)*n2*n1 + (iy)*n1 + ix]
#define v(iz,iy,ix) v_ptr[(iz)*n2*n1 + (iy)*n1 + ix]

#define r(iz,iy,ix) r_ptr[(iz)*n2*n1 + (iy)*n1 + ix]
double *restrict u_ptr, *restrict v_ptr, *restrict r_ptr;
u_ptr = & u[MYTHREAD].arr[0];

v_ptr = & v[MYTHREAD].arr[0];
r_ptr = & r[MYTHREAD].arr[0];

// loop nest accounting for 60% of total walltime
r(i3, i2, i1) = v(i3, i2, i1) - a[0] * u(i3, i2, i1) - ...
...

}

If u were used to access shared local data via UPC’s run-
time address resolution for shared pointers [4, 5], the perfor-
mance would suffer from executing a branch per data access.
The use of u ptr, a regular C pointer, enables the local por-
tion of the shared array u to be accessed without the need
for runtime address resolution.

In Fortran, u is a subroutine argument and cannot alias
other variables, while in C, u ptr is a pointer. Hence, lack-
ing sophisticated alias analysis, a C compiler conservatively
assumes that u ptr can alias other variables. In turn, this
prevents the C compiler from doing some high-level loop
nest optimizations. Using Rice’s HPCToolkit [19, 13] (a
suite of tools for profile-based performance analysis using
statistical sampling of hardware performance counters) we
analyzed one-processor versions of MG class B. We discov-
ered that the BUPC version of resid had 2.08 times more

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
CAF−barrier
BUPC−restrict
BUPC−p2p
BUPC−strided

(a) MG class A on Itanium2+Myrinet

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
CAF−barrier
BUPC−restrict
BUPC−p2p
BUPC−strided

(b) MG class C on Itanium2+Myrinet

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
BUPC−restrict
BUPC−p2p

(c) MG class B on Altix 3000

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
IUPC

(d) MG class B on Origin 2000

Figure 1: Comparison of MPI, CAF and UPC parallel efficiency for NAS MG.

retired instructions and executed ten times slower than its
Fortran counterparts. For the entire benchmark, the perfor-
mance of the BUPC version was seven times lower (144 vs.
21 seconds).

To inform the back-end C compiler that u ptr does not
alias other variables, we annotated the declaration of u ptr

with the C99 restrict keyword. Restricting all relevant
pointers in resid resulted in a 20% reduction in the number
of retired instructions and yielded a factor of two speedup for
this routine. Using restrict for BUPC-restrict where it was
safe to do so resulted in 2.3 times performance improvement
reducing the execution time to 63 seconds, only three times
slower than MPI instead of the original factor of seven.

With CAF, we had previously encountered a similar dif-
ficulty with overly conservative assumptions about aliasing
in back-end Fortran compilers when computing on the lo-
cal parts of COMMON/SAVE co-arrays. In CAF, global
co-arrays do not alias, but their pointer-based representa-
tion does not convey this information to back-end Fortran
compilers. To address this problem, we previously devel-

oped a source-to-source transformation known as procedure
splitting [7]. This transformation eliminates overly conserva-
tive assumptions about aliasing by transforming a pointer-
based representation for co-array data into one based on
dummy arguments, which are correctly understood to be
free of aliases.

While alias analysis of UPC programs can be improved
by having programmers or (in some cases) UPC compilers
add a restrict keyword, there is another fundamental is-
sue preventing efficient optimization of scientific C codes.
The Fortran code snippet above uses multidimensional ar-
rays with symbolic bounds, expressed as specification ex-
pressions by parameters passed to the resid subroutine. In
UPC MG, the macro u creates the syntactic illusion of a
multidimensional array, but in fact, this macro linearizes
the subscript computation. C does not have the ability to
index u using a vector of subscripts. Thus, to safely reorder
such references during optimization, C compilers must per-
form dependence analysis of linearized subscripts, which is
harder than analyzing a vector of subscripts. This tends to

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
CAF−barrier
BUPC−reduction

(a) CG class C on Itanium2+Myrinet

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC

(b) CG class B on Alpha+Quadrics

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
CAF−barrier
BUPC−reduction

(c) CG class C on Altix 3000

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
IUPC
IUPC−reduction

(d) CG class B on Origin 2000

Figure 2: Comparison of MPI, CAF and UPC parallel efficiency for NAS CG.

degrade the precision of dependence analysis, which limits
the ability of C compilers to exploit some high-level opti-
mizations, and thus yields slower code. To estimate the
performance degradation due to linearized subscripts in C,
we linearized subscripts in a Fortran version of resid. This
change doubled the execution time of the Fortran version of
resid and degraded the overall performance of MG class B
on one processor by 30% on the Itanium2+Myrinet cluster.

Point-to-point synchronization. In MG, each SPMD
thread needs to synchronize only with a small number of
neighbors. While a collective barrier can be used to pro-
vide sufficient synchronization, it provides more synchro-
nization than necessary. Our experiments show that un-
necessary collective synchronization degrades performance
on loosely-coupled architectures. This effect can be seen
in Figures 1 (a) and (b) by comparing the efficiency of the
BUPC-restrict and BUPC-p2p versions. We derived BUPC-
p2p from BUPC-restrict by using a reference language-level
implementation of point-to-point synchronization. The per-
formance boost is evident for the larger number of processors
and amounts to 49% for class A and 14% for class C in 64

processor executions. The class A executions benefit more
from using point-to-point synchronization because they are
more communication bound. A similar effect can be seen for
CAF: for 64 processors, CAF-barrier shows a 54% slowdown
for class A and 18% slowdown for class C.

Non-contiguous data transfers. For certain programs,
efficient communication of non-contiguous data can be es-
sential for high efficiency. For MG, the y-direction transfers
of BUPC-restrict are performed using several communica-
tion events, each transferring a contiguous chunk of memory
equal to one row of a 3D volume. The BUPC-strided version
is derived from BUPC-p2p. It moves data in the y-direction
by invoking a library primitive to perform a strided data
transfer; this primitive is a member of a set of proposed UPC
language extensions for strided data transfers [3]. Even us-
ing Berkeley’s reference implementation of the strided com-
munication operation (as opposed to a carefully-optimized
implementation) yielded a 28% performance improvement
of BUPC-strided over BUPC-p2p for class A on 64 pro-
cessors and a 13% efficiency improvements for class C on
64 processors. The most efficient communication can be

achieved by packing data into a contiguous communication
buffer and sending it as one contiguous chunk. A version
that uses packing is marginally more efficient than BUPC-
strided, thus, we do not show it on the plot.

While in most cases using the UPC strided communication
extensions is more convenient than packing and unpacking
data on the source and destination, we found it more difficult
to use such library primitives than simply reading or writing
multi-dimensional co-array sections in CAF using Fortran 90
triplet notation, which cafc automatically transforms into
equivalent strided communication. For CAF programs, a
compiler can automatically infer the parameters of a strided
transfer, such as memory strides, chunk sizes, and stride
counts; whereas in UPC, these parameters must be explicitly
managed by the user.

Figure 1(c) presents performance results of NAS MG class
B (problem size 2563) for the Altix 3000 architecture. The
MPI, CAF, BUPC, BUPC-restrict, and BUPC-p2p curves
are similar to the ones presented for the Itanium2+Myrinet
2000 cluster. We used the same versions of the Intel For-
tran and C compilers. Therefore, we expected similar trends
for the scalar performance of MPI, CAF and BUPC. In-
deed, MPI and CAF versions show comparable performance,
while BUPC is up to 4.5 times slower and BUPC-restrict is
3.6 times slower than CAF. The efficiency of all programs
is lower on this architecture compared to that on the Ita-
nium2+Myrinet2000 cluster because in our experiments on
the Altix architecture we ran two processes per dual node,
sharing the same memory bus.

For CAF, using barrier-based instead of point-to-point
synchronization does not cause a significant loss of perfor-
mance on this architecture for 32 or fewer processors. How-
ever, for 64 processors, we observed a performance degrada-
tion of 29% when CAF MG used barriers for synchroniza-
tion. For UPC, BUPC-p2p outperforms BUPC-restrict by
52% for NAS MG on 64 processors.

Figure 1(d) presents the performance results on the Origin
2000 machine for NAS MG class B (problem size 2563). The
MPI curve corresponds to the original MPI version imple-
mented in Fortran. The CAF curve gives the performance of
the optimized CAF version with the same optimizations as
described previously except that non-blocking communica-
tion is not used because the architecture supports only syn-
chronous interprocessor memory transfers. The BUPC and
IUPC curves describe the performance of the UPC version
of MG compiled with the Berkeley UPC and the Intrepid
UPC compilers respectively.

The CAF version slightly outperforms the MPI version
due to more efficient one-sided communication [8]. The MPI
version slightly outperforms BUPC which, in turn, slightly
outperforms IUPC. The MIPSPro C compiler, which is used
as a back-end compiler for BUPC, performs more aggressive
optimizations compared to the Intel C compiler. In fact,
using the restrict keyword does not yield additional im-
provement because the alias analysis done by the MIPSPro
C compiler is more precise. Nonetheless, it is our belief that
the lack of multidimensional arrays in the C language pre-
vents the MIPSPro C compiler from applying high-level loop
transformations such as unroll & jam and software pipelin-
ing resulting in an 18% slowdown of BUPC MG class B
on one processor relative to the one-processor MPI version.
The IUPC version was compiled with the Intrepid compiler
based on GCC [12], which performs less aggressive optimiza-

tion than the MIPSPro compiler. Lower scalar performance
of the IUPC version results in a similar 48% slowdown.

The one-processor BUPC versions of MG class A execute
approximately 17% slower than the corresponding CAF ver-
sion (65 seconds vs. 55 seconds). To determine the cause
of this performance difference, we used SGI’s perfex hard-
ware counter-based analysis tool to obtain a global picture
of the application’s behavior with regards to the machine
resources. A more detailed analysis using SGI’s ssrun and
Rice’s HPCToolkit, led us to conclude that the BUPC ver-
sion completes 51% more loads than the CAF version. The
cause of this was the failure of the MIPSPro C compiler to
apply loop fusion and alignment to the most computation-
ally intensive loop nest in the application (in the resid()

routine). The MIPSPro Fortran compiler performed loop
fusion and alignment. This reduced the memory traffic by
reusing results produced in registers, which in turn improved
the software-pipelined schedule for the loop. We expect sim-
ilar issues to inhibit the performance of other less computa-
tionally intensive loops in the BUPC-compiled application.

3.5 NAS CG
Figure 2(a) shows the parallel efficiency of NAS CG class

C (problem size 150000) on an Itanium2+Myrinet 2000 clus-
ter. In the figure, MPI represents the NPB-2.3 MPI version,
CAF represents the fastest CAF version, BUPC represents
a UPC implementation of CG compiled with the Berkeley
UPC compiler, CAF-barrier represents a CAF version using
barrier synchronization, and BUPC-reduction represents an
optimized UPC version.

The CAF version of CG was derived from the MPI version
by converting two-sided MPI communication into equivalent
calls to notify/wait and vectorized one-sided communica-
tion [6]. The BUPC version is also based on the MPI ver-
sion; it uses UPC shared arrays for communication and split-
phase barriers and employs thread-privatization [10] (using
regular pointers to access shared data available locally) for
improved scalar performance.

The performance of the MPI and CAF versions is compa-
rable for class C, consistent with our previous studies [6, 7].
The performance of BUPC was up to a factor of 2.5 slower
than that of MPI. By using HPCToolkit, we determined
that for one CPU, both the MPI and the BUPC versions
spend most of their time in a loop that performs a sparse
vector-matrix product; however, the BUPC version spent
over twice as many cycles in the loop as the Fortran version.
The UPC and the Fortran versions of the loop are shown in
Figure 3. By inspecting the Intel C and Fortran compilers
optimization report, we determined that the Fortran com-
piler recognizes that the loop performs a sum reduction and
unrolls it, while the C compiler does not unroll it. We man-
ually modified the UPC version of the loop to compute the
sum using two partial sums, as shown in Figure 3(c); we de-
note this version BUPC-reduction. On Itanium processors,
this leads to a more efficient instruction schedule.

For one CPU, BUPC-reduction achieved the same perfor-
mance as MPI. The graph in Figure 2(a) shows that BUPC-
reduction is up to 2.6 times faster then BUPC. On up to
32 CPUs, BUPC-reduction is comparable in performance
to MPI. On 64 CPUs, BUPC-reduction is slower by 20%
than the MPI version. To explore the remaining differences,
we investigated the impact of synchronization. We imple-
mented a CAF version that uses barriers for synchronization

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
BUPC−restrict

(b) SP class C on Itanium2+Myrinet

1 4 9 16 25 36 49 64 81 100121
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC

(a) SP class C on Alpha+Quadrics

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
BUPC−restrict

(c) SP class C on Altix 3000

1 4 9 16 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
IUPC

(d) SP class B on Origin 2000

Figure 4: Comparison of MPI, CAF and UPC parallel efficiency for NAS SP.

sum = 0.0;

for (k = rowstr[j];
k < rowstr[j+1];

k++) {
sum +=
a[k-1]*p[colidx[k-1]-1];

}

(a) UPC

sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1
sum = sum + a(k)*p(colidx(k))

end do

(b) Fortran

t1 = t2 = 0
for (...; k+=2) {

t1 += a[k-1] * p[colindex[k-1]-1]

t2 += a[k] * p[colindex[k]-1]
}

// + fixup code if the range of k isn’t even
sum = t1 + t2

(c) UPC with sum reduction

Figure 3: UPC and Fortran versions of a sparse

matrix-vector product

to mimic the synchronization present in BUPC-reduction.
As shown in Figure 2(a), the performance of CAF-barrier
closely matches that of BUPC-reduction for large numbers
of CPUs; it also experiences a 38% slowdown compared to
the CAF version.

Figure 2(b) shows the parallel efficiency of NAS CG class
B (problem size 75000) on an Alpha+Quadrics cluster. This
study evaluated the same versions of the MPI, CAF and
BUPC codes as on the Itanium2+Myrinet 2000 cluster. On
this platform, the three versions of NAS CG achieve compa-
rable performance. The Compaq compiler was able to opti-
mize the non-unrolled C version of the sparse matrix-vector
product loop; for this reason BUPC and BUPC-reduction
yield similar performance.

Figure 2(c) shows the parallel efficiency of NAS CG class
C (problem size 150000) on an SGI Altix 3000. This study
evaluates the same versions of NAS CG as those used on
the Itanium2+Myrinet 2000 cluster. The CAF and MPI
versions have similar performance. BUPC is up to a fac-
tor of 3.4 slower than MPI. BUPC-reduction performs com-
parably to MPI on up to 32 CPUs and it is 14% slower

on 64 CPUs. The CAF-barrier version experiences a slow-
down of 19% relative to CAF. Notice also that while the
performance degradation due to the use of barrier-only syn-
chronization is smaller on the SGI Altix 3000 than on the
Itanium2+Myrinet 2000 cluster, it prevents achieving high-
performance on large number of CPUs on both architec-
tures.

The parallel efficiency of NAS CG class B (problem size
75000) on the SGI Origin 2000 is shown in Figure 2(d).
We used the same MPI and CAF versions as for the pre-
vious three platforms. We used the Berkeley UPC and the
Intrepid UPC compilers to build the UPC codes; the corre-
sponding versions are BUPC and IUPC. On this platform,
MPI, CAF and BUPC have comparable performance across
the range of CPUs. In each case, the MIPSPro compil-
ers were able to optimize the sparse matrix-vector prod-
uct loop automatically and effectively; consequently, using
the partial sums version didn’t boost performance. We also
didn’t notice a performance difference between CAF and
CAF-barrier. The IUPC version is up to 50% slower than
the other three versions. The principal loss of performance
stems from ineffective optimization of the sparse-matrix vec-
tor product computation. IUPC-reduction represents an
IUPC-compiled version of UPC CG with the sparse matrix-
vector product loop unrolled; this version is only 12% slower
than MPI.

3.6 NAS SP
Figure 4(a) shows the parallel efficiency curves for NAS SP

class C (problem size 1623) on the Itanium2+Myrinet2000
cluster. The MPI curve serves as the baseline for comparison
and represents the performance of the original NPB-2.3 SP
benchmark. The CAF curve shows the performance of the
fastest CAF variant. It uses point-to-point synchronization
and employs non-blocking communication to better overlap
communication with computation. The BUPC and BUPC-
restrict curves show the performance of two versions of SP
compiled with the Berkeley UPC compiler.

The performance of the CAF version is roughly equal to
that of MPI. Similar to the other UPC NAS benchmarks
compiled using the back-end Intel C compiler, the scalar per-
formance suffers from poor alias analysis: the one-processor
version of BUPC class C is 3.3 times slower than the one-
processor MPI version. Using the restrict keyword to im-
prove alias analysis yielded a scalar performance boost: the
one-processor version of BUPC-restrict class C is 18% faster
than BUPC. The trend is similar for larger number of CPUs.

There is a conceptual difference in the communication im-
plementation of the dimensional sweeps in CAF and BUPC.
The CAF implementation uses point-to-point synchroniza-
tion, while the UPC implementation uses split-phase bar-
rier synchronization. In general, it is simpler to use split-
phase barrier synchronization, however, for NAS SP, point-
to-point and split-phase barrier synchronization are equally
complex. Since barrier synchronization is stronger than nec-
essary in this context, it could potentially degrade perfor-
mance.

Figure 4(b) reports the parallel efficiency of the MPI,
CAF, and BUPC versions of NAS SP class C (problem size
1623) on the Alpha+Quadrics platform. It can be observed
that the performance of CAF is slightly worse than that of
MPI. We attribute this to the lack of non-blocking notifica-
tion support in the CAF runtime layer. The performance of

the BUPC version is lower than that of MPI due to worse
scalar performance of the C code: it is 1.4 times slower for
one processor and increases to 1.5 times slower for 121 pro-
cessors. The use of the restrict keyword does not have
any effect on performance because of the high quality de-
pendence analysis of the Alpha C compiler.

Figure 4(c) shows the efficiency of MPI, CAF, BUPC,
and BUPC-restrict versions of NAS SP class C (problem
size 1623) on the Altix 3000 system. The performance of
CAF and MPI is virtually identical, while BUPC is a factor
of two slower on four processors (we were not able to run
one-processor version due to memory constraints). Using
the restrict keyword improves performance on average by
17%.

Figure 4(d) shows parallel efficiency of MPI, CAF, BUPC,
and IUPC versions of NAS SP for class B (problem size 1023)
on the Origin 2000 machine. The performance of CAF is
very close to that of MPI. Both UPC versions have similar
performance and are slower than MPI or CAF. Again, the
difference is attributable to lower scalar performance. For
the one-processor SP class B, BUPC was 57% slower than
MPI.

We observed that the one-processor BUPC-compiled ver-
sion of SP class A executes approximately 43% slower than
the corresponding MPI version. Using hardware perfor-
mance counters, we found that the BUPC-compiled version
executed twice as many instructions as the CAF version.

A detailed analysis of this difference using HPCToolkit
and SGI’s ssrun helped us identify that a computation in-
tensive single-statement loop nest present in both versions
was getting compiled ineffectively for UPC. In Fortran, the
loop, which accesses multidimensional array parameters, was
unrolled & jammed to improve outer loop reuse and software
pipelined by the MIPSPro Fortran compiler. The corre-
sponding UPC loop, which accesses 1D linearized C arrays
through pointers, was not unrolled or software pipelined by
the MIPSPro C compiler, leading to less efficient code. This
more than doubled the number of graduated instructions for
the loop in the BUPC version compared to the MPI version.

The generated code for the Fortran loop was able to reuse
not only floating point data, but integer address arithmetic
as well. We believe that this specific observation applies
to many of the single-statement computationally intensive
loops present in SP’s routines. For multi-statement loops,
the difference in the number of executed instructions be-
tween the UPC and MPI versions was not as significant.
Such loops already have opportunities for reusing address
arithmetic and floating point values even without applying
transformations such as unroll & jam.

3.7 NAS BT
In Figure 5(a), we present parallel efficiency results of

NAS BT class C (problem size 1623) on an Itanium2+Myrinet
2000 cluster. We used the NPB-2.3 MPI version, MPI,
the most efficient CAF version, CAF, a UPC implementa-
tion similar to MPI and compiled with the Berkeley UPC
compiler, BUPC, and two optimized UPC versions, BUPC-
restrict and BUPC-packed. Due to memory constraints, we
couldn’t run the sequential Fortran version of BT for class
C; to compute parallel efficiency we assume that the effi-
ciency of MPI on four CPUs is one, and compute the rest of
the efficiencies relative to that baseline performance.

The CAF implementation of BT is described in more de-

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
BUPC−restrict
BUPC−packed

(a) BT class C on Itanium2+Myrinet

1 4 9 16 25 36 49 64 81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
BUPC−packed

(b) BT class B on Alpha+Quadrics

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
BUPC−restrict

(c) BT class B on Altix 3000

1 4 9 16 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ff

ic
ie

n
cy

:
S

p
ee

d
u

p
/(

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs
)

MPI
CAF
BUPC
IUPC

(d) BT class A on Origin 2000

Figure 5: Comparison of MPI, CAF and UPC parallel efficiency for NAS BT.

tail elsewhere [6, 7]. It uses communication vectorization, a
trade-off between communication buffer space and amount
of necessary synchronization, procedure splitting and non-
blocking communication. It also uses the packing of strided
PUTs, due to inefficient multi-platform support of strided
PUTs by the CAF runtime; we are actively working to ad-
dress this issue.

The performance of the CAF version is better than or
equal to that of MPI. The performance of the initial UPC
version, BUPC, was up to a factor of five slower than that of
the MPI version. By using HPCToolkit, we determined that
several routines that perform computation on the local part
of shared data, namely matmul sub, matmul vec, binvrhs,
binvcrhs and compute rhs, are considerably slower in BUPC
compared to the MPI version. To reduce overly conservative
assumption about aliasing, we added the restrict keyword
to the declarations of all the pointer arguments of the sub-
routines matmul sub, matmul vec, binvrhs, and binvcrhs.
The modified UPC version of NAS BT is BUPC-restrict; it
is up to 42% faster than BUPC.

To investigate the impact of communication performance

on parallel efficiency, we instrumented all NAS BT versions
to record the times spent in communication and synchro-
nization. We found that BUPC-restrict spent about 50-
100 times more in communication on the Itanium2+Myrinet
2000 cluster because the communication in the sweeps was
not fully vectorized; it transfers a large number of messages
of 25 double precision numbers. In [7] we show that, in
the absence of efficient runtime support for strided commu-
nication, packing for the CAF version of BT can improve
performance by as much as 30% on cluster platforms.

We transformed the BUPC-restrict version to perform
packing and unpacking and used the UPC upc memget prim-
itive to communicate the packed data; the resulting ver-
sion with packed communication is denoted BUPC-packed.
This version is up to 32% faster than BUPC-restrict. Over-
all, BUPC-packed yields a factor of 2.44 improvement over
BUPC.

In Figure 5(b) we present the results for NAS BT class
B6(problem size 1023) on an Alpha+Quadrics cluster. The

6We used class B due to limitations encountered for class C

MPI version yields the best performance; CAF is up to 26%
slower than MPI, and BUPC is up to two times slower than
MPI. As noticed in section 3.6 for SP class C on the Al-
pha+Quadrics cluster, using the restrict keyword didn’t
have an effect; consequently, BUPC and BUPC-restrict have
similar performance. This shows that even though the back-
end C compiler can optimize routines such as matmul sub,
matmul vec, binvrhs, and binvcrhs, which contain at most
one loop or just straight-line code, it has difficulties opti-
mizing compute rhs. This subroutine contains several com-
plex loop nests and performs references to the local parts
of multiple shared arrays using private pointers; this poses
a challenge to the back-end C compiler. In the CAF ver-
sion, compute rhs performs the same computations on local
parts of co-arrays; to convey the lack of aliasing to the back-
end Fortran compiler we use procedure splitting. Packing of
communication led to a performance gain: BUPC-packed is
up to 14% faster than BUPC, although it is still up to 82%
faster than MPI.

In Figure 5(c) we present the results for NAS BT class
B (problem size 1023) on an SGI Altix 3000 platform. We
studied class B, due to memory and time constraints on
the machine. The MPI and CAF versions have similar per-
formance, while BUPC is up to two times slower than MPI.
BUPC-restrict is up to 30% faster than BUPC and up to 43%
slower than MPI. BUPC-packed has the same performance
as BUPC-restrict. Packing didn’t improve the performance
because fine-grain data transfers are efficiently supported in
hardware.

Finally, in Figure 5(d) we present results on the SGI Ori-
gin 2000 machine. We studied class A (problem size 643) of
NAS BT due to memory and time constraints. The CAF
and MPI versions perform comparably, while BUPC per-
forms 40% slower than the MPI version. Similar to our ex-
periences with the other benchmarks, using restrict didn’t
improve the performance of BUPC-restrict, and similar to
the SGI Altix 3000, communication packing didn’t improve
the performance of BUPC-packed.

4. CONCLUSIONS
Our study showed that both UPC and CAF versions of

the NAS benchmarks can yield scalable performance on clus-
ter platforms when using bulk communication. Currently,
neither the Rice cafc compiler for CAF nor the Berkeley or
Intrepid UPC compilers automatically synthesize bulk com-
munication for multi-dimensional arrays from element-wise
references to remote data. Thus, the responsibility for em-
ploying bulk communication to achieve high performance
currently falls on programmers. For CAF, programming
bulk communication requires accessing remote co-array data
using Fortran 90 array triplet notation, which is not a sig-
nificant hardship. For UPC, a programmer must code bulk
communication explicitly using UPC communication primi-
tives such as upc memput, which is no easier than using MPI.

Our experiments showed that support for communicat-
ing strided sections efficiently is necessary for achieving top
performance with regular codes. For instance, using strided
communication primitives instead of element-wise communi-
cation boosts performance 13-28% for BUPC MG on 64 pro-

for the CAF and BUPC versions. CAF could not allocate
the large data size required for BT class C on small number
of processors, while BUPC could not allocate memory for a
number of threads larger than 100.

cessors on the Itanium2+Myrinet platform. While users can
manually pack and unpack data in CAF and UPC programs
to boost communication performance, this is tedious. CAF
and UPC compilers and runtime systems should provide effi-
cient support for strided transfers. For CAF, the Fortran 90
strided array sections syntax provides a convenient way to
express strided transfers, while in UPC, programmers must
use UPC library routines such as upc memput fstrided, which
require manually computing memory strides, chunk sizes,
and stride counts for each strided transfer.

Our experiments also showed that using only barriers for
synchronization can significantly hurt performance. There
are three alternatives. One can do nothing and accept per-
formance losses that we observed as high as 30–50% for CAF
MG on the Itanium2+Myrinet cluster; one can develop syn-
chronization strength reduction algorithms and rely on CAF
and UPC compilers to replace barriers with point-to-point
synchronization; or one can add point-to-point primitives
to UPC as we have previously proposed adding to CAF.
We believe that developing effective compiler algorithms for
synchronization strength reduction is appropriate. How-
ever, we also believe that having point-to-point synchroniza-
tion available explicitly within the languages is important to
avoid performance loss when compiler optimization is inad-
equate. Working with the BUPC developers, we created
a language-level implementation of point-to-point synchro-
nization primitives in UPC, and used it in the MG bench-
marks. We observed performance improvements of 14-49%
improvement on an Itanium2+Myrinet cluster and 52% im-
provement on an SGI Altix 3000 for 64 processor runs. It
is worth mentioning that a language-level implementation
of notify/wait in UPC will not allow overlapping of notifi-
cations with asynchronous communication events on all in-
terconnects. We believe that a specialized, lower-level im-
plementation of the point-to-point primitives is necessary to
provide such an overlap.

The only feasible way to build multi-platform CAF or
UPC compilers is to employ source-to-source translation.
This enables leveraging existing compilers for C and Fortran
on the target architectures. However, employing this strat-
egy successfully requires generating code that minimizes the
impact of back-end compiler limitations, such as conserva-
tive alias and dependence analysis. Analysis shortcomings in
back-end compilers inhibit important high-level loop trans-
formations, such as unroll-and-jam and software pipelining,
which are critical to performance on modern microprocessor-
based systems.

Our experiments showed that compiler loop transforma-
tions including alignment, fusion, software pipelining, unroll
and jam, and optimization of reductions were responsible for
dramatically improving the efficiency of CAF and F77+MPI
codes. However, in many cases, C compilers compiling code
generated by BUPC or the Intrepid UPC compiler failed to
apply these key optimizations; this was a major impediment
to achieving high-performance with UPC.

Unlike CAF, UPC does not provide special syntax for ac-
cessing the local part of shared arrays. If programmers ref-
erence the local part implicitly through pointers to shared
objects, the resulting code will be inefficient due to unnec-
essary UPC runtime address translation. To work around
this, UPC programmers can use private C pointers to access
local part of shared objects. This is cumbersome and also
introduces extra aliasing in the code. Another impediment

to analysis and optimization of UPC codes is the use of lin-
earized subscripts to access multi-dimensional data through
pointers. Currently, multi-dimensional shared arrays are not
a primitive in UPC because of the difficulty of managing
multi-dimensional data distributions at run-time. In some
cases, by marking pointers with restrict in the UPC codes,
we were able to assist the vendor C compilers in avoiding
worst-case assumptions about linearized subscripts so com-
pilers could generate better code through software pipelin-
ing. In other cases, even after restricting pointers, we never
observed any high-level transformations such as fusion or
unroll-and-jam being applied on the UPC codes.

Extending the UPC model to incorporate multidimen-
sional shared arrays with symbolic bounds would enable a
UPC compiler to perform more accurate alias and depen-
dence analysis and consequently to apply high-level loop
transformations. Having an explicit syntax for local accesses
to shared arrays would permit simple programming and the
use of restricted pointers in the code generated by a UPC
compiler. Improving the quality of back-end C compilers
is critical if UPC performance is to match that of MPI on
scientific codes.

Acknowledgments
We thank J. Nieplocha and V. Tipparaju for collaborat-
ing on the refinement and tuning of ARMCI. We thank F.
Zhao and N. Tallent for their work on the Open64/SL For-
tran front-end. We thank D. Bonachea, C. Bell, J. Duell,
W. Chen, C. Iancu, and K. Yelick for their discussions and
assistance regarding the Berkeley UPC compiler, GASNet
library, UPC extensions, and UPC language-level point-to-
point synchronization.

5. REFERENCES
[1] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,

A. Woo, and M. Yarrow. The NAS parallel
benchmarks 2.0. Technical Report NAS-95-020, NASA
Ames Research Center, Dec. 1995.

[2] D. Bonachea. Gasnet specification, v1.1. Technical
Report CSD-02-1207, U.C. Berkeley, October 2002.

[3] D. Bonachea. Proposal for extending the upc memory
copy library functions and supporting extensions to
gasnet, v1.0. Technical Report LBNL-56495, Lawrence
Berkeley National, October 2004.

[4] F. Cantonnet, Y. Yao, S. Annareddy, A. Mohamed,
and T. El-Ghazawi. Performance monitoring and
evaluation of a UPC implementation on a NUMA
architecture. In Proceedings of the International
Parallel and Distributed Processing Symposium, Nice,
France, Apr. 2003.

[5] W. Chen, D. Bonachea, J. Duell, P. Husbands,
C. Iancu, and K. Yelick. A performance analysis of the
Berkeley UPC compiler. In Proceedings of the 17th
ACM International Conference on Supercomputing,
San Francisco, California, June 2003.

[6] C. Coarfa, Y. Dotsenko, J. Eckhardt, and
J. Mellor-Crummey. Co-array Fortran Performance
and Potential: An NPB Experimental Study. In Proc.
of the 16th Intl. Workshop on Languages and

Compilers for Parallel Computing, number 2958 in
LNCS. Springer-Verlag, October 2-4, 2003.

[7] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A
Multiplatform Co-Array Fortran Compiler. In
Proceedings of the 13th Intl. Conference of Parallel
Architectures and Compilation Techniques, Antibes
Juan-les-Pins, France, September 29 - October 3 2004.

[8] Y. Dotsenko, C. Coarfa, J. Mellor-Crummey, and
D. Chavarŕıa-Miranda. Experiences with Co-Array
Fortran on Hardware Shared Memory Platforms. In
Proceedings of the 17th International Workshop on
Languages and Compilers for Parallel Computing,
September 2004.

[9] T. El-Ghazawi, F. Cantonne, P. Saha, R. Thakur,
R. Ross, and D. Bonachea. UPC-IO: A Parallel I/O
API for UPC v1.0, July 2004. Available at
http://upc.gwu.edu/docs/UPC-IOv1.0.pdf.

[10] T. A. El-Ghazawi and F. Cantonnet. UPC
performance and potential: A NPB experimental
study. In Proceedings of the 2002 ACM/IEEE
conference on Supercomputing (CDROM), Baltimore,
MD, Nov. 2002. IEEE Computer Society.

[11] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper.
UPC Language Specifications v1.1.1, October 2003.

[12] Intrepid Technology Inc. GCC Unified Parallel C.
http://www.intrepid.com/upc.

[13] J. Mellor-Crummey, R. Fowler, G. Marin, and
N. Tallent. HPCView: A tool for top-down analysis of
node performance. The Journal of Supercomputing,
23:81–101, 2002. Special Issue with selected papers
from the Los Alamos Computer Science Institute
Symposium.

[14] V. Naik. A scalable implementation of the NAS
parallel benchmark BT on distributed memory
systems. IBM Systems Journal, 34(2), 1995.

[15] J. Nieplocha and B. Carpenter. ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-Time Systems, volume
1586 of Lecture Notes in Computer Science, pages
533–546. Springer-Verlag, 1999.

[16] R. W. Numrich and J. K. Reid. Co-Array Fortran for
parallel programming. ACM Fortran Forum,
17(2):1–31, August 1998.

[17] Open64 Developers. Open64 compiler and tools.
http://sourceforge.net/projects/open64, Sept.
2001.

[18] Open64/SL Developers. Open64/SL compiler and
tools. http://hipersoft.cs.rice.edu/open64, July
2002.

[19] Rice University. HPCToolkit performance analysis
tools. http://www.hipersoft.rice.edu/hpctoolkit.

[20] Rice University. cafc - A Multiplatform, Open Source
Co-Array Fortran Compiler.
http://www.hipersoft.rice.edu/caf, Apr. 2005.

[21] E. Wiebel, D. Greenberg, and S. Seidel. UPC
Collective Operations Specifications v1.0, December
2003. Available at
http://upc.gwu.edu/docs/UPC_Coll_Spec_V1.0.pdf.

