
A New Vision for Coarray Fortran

John Mellor-Crummey, Laksono Adhianto, William N. Scherer III, Guohua Jin
Department of Computer Science, Rice University
{johnmc, laksono, scherer, jin}@rice.edu

ABSTRACT
In 1998, Numrich and Reid proposed Coarray Fortran as a
simple set of extensions to Fortran 95 [8]. Their principal
extension to Fortran was support for shared data known as
coarrays. In 2005, the Fortran Standards Committee began
exploring the addition of coarrays to Fortran 2008, which is
now being finalized. Careful review of drafts of the emerging
Fortran 2008 standard led us to identify several shortcom-
ings with the proposed coarray extensions. In this paper, we
briefly critique the coarray extensions proposed for Fortran
2008, outline a new vision for coarrays in Fortran language
that is far more expressive, and briefly describe our strategy
for implementing the language extensions that we propose.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Constructs
and Features; D.1.3 [Programming Techniques]: Con-
current Programming—parallel programming

Keywords
Coarray Fortran, Parallel programming

1. INTRODUCTION
In 1998, Numrich and Reid proposed a small set of exten-
sions to Fortran 95 to support parallel programming that
they dubbed Coarray Fortran (CAF) [8]. They envisioned
CAF as a model for SPMD parallel programming based on
a static collection of asynchronous process images (known
as images for short) and a partitioned global address space.
Their principal extension to Fortran was support for shared
data in the form of coarrays. Coarrays extend Fortran’s
syntax for type declarations and variable references with a
bracketed tuple that is used to declare shared data or access
data associated with other images. For example, the decla-
ration integer :: a(n,m)[*] declares a shared coarray
with n × m integers local to each image. Dimensions in the
bracketed tuple are called codimensions. Coarrays may be
declared for primitive or user-defined types. The data for

PGAS’09, October 5–8, 2009, Ashburn, Virginia, USA.

a coarray associated with an image may be a singleton in-
stance of a type rather than an array of type instances. In-
stead of explicitly coding message exchanges to obtain data
belonging to other images, a CAF program can directly ac-
cess a coarray associated with another image by appending
a bracketed tuple to a reference to a coarray variable. For
instance, any image can read the first column of data in
coarray a from image p by executing the right-hand side
reference a(:,1)[p].

Numrich and Reid’s design for CAF included several syn-
chronization primitives. The most important of these are
the synchronous barrier sync_all; sync_team, which is used
for synchronization among dynamically-specified teams of
two or more processes; and start_critical/end_critical,
which control access to a global critical section.

In 2005, the Fortran Standards committee began exploring
the addition of coarray constructs to the emerging Fortran
2008 standard. Their design closely follows Numrich and
Reid’s original vision. Coarrays are shared data allocated
collectively across all images. A coarray can have multi-
ple codimensions enabling one to conveniently index a coar-
ray distributed over a grid of process images that is logi-
cally multidimensional. Our earlier criticisms about Num-
rich and Reid’s teams in CAF supporting only all-pairs com-
munication rather than efficient collective operations led the
Fortran Standards Committee to consider support for pre-
arranged image teams. Unfortunately, support for image
teams has been tabled for Fortran 2008, although it may be
considered for inclusion in the future. A previous detailed
critique [6] of the coarray extensions proposed for Fortran
2008 and a recent review of the latest working draft for For-
tran 2008 [4] revealed several shortcomings in emerging coar-
ray extensions that limit their expressiveness:

• There is no support for processor subsets; for instance,
coarrays must be allocated over all images.

• Coarrays must be declared as global variables; one can-
not dynamically allocate a coarray into a locally scoped
variable.

• The coarray extensions lack any notion of global point-
ers, which are essential for creating and manipulating
any kind of linked data structure.

• Reliance on named critical sections for mutual exclu-
sion hinders scalable parallelism by associating mutual
exclusion with code regions rather than data objects.

• Fortran 2008’s sync images statement (a reworked
version of Numrich and Reid’s sync_team) enables one
to synchronize directly with one or more images; how-
ever, this construct doesn’t provide a safe synchroniza-
tion space. As a result, synchronization operations in
user’s code that are pending when a library call is made
can interfere with synchronization in the library call.

• There are no mechanisms to avoid or tolerate latency
when manipulating data on remote images.

• There is no support for collective communication.

• There is no support for hiding communication latency.

These shortcomings caused us to rethink the CAF model.
Our interest is in developing an expressive set of parallel
extensions for Fortran that map well onto parallel systems
of all sizes, ranging from multicore nodes to petascale plat-
forms. In this paper, we propose a new vision for coarray-
based extensions to the Fortran language. Our design fo-
cuses on three core tenets: orthogonality, expressiveness,
and simplicity. In a nutshell, it provides full support for
processor subsets, logical topologies that are more expres-
sive than multiple codimensions, dynamic allocation of coar-
rays, scalable mutual exclusion, safe synchronization spaces,
latency hiding, collective communication, and a memory
model that enables one to trade ease of use for performance.

In Sections 2, we outline our new vision for CAF. In Sec-
tion 3, we highlight the implementation of key features to
show that this vision is practical. In Section 4, we describe
ongoing work.

2. COARRAY FORTRAN 2.0 DESIGN
Here, we describe an expressive set of coarray-based exten-
sions to Fortran that we believe provide a productive paral-
lel programming model. Compared to the emerging Fortran
2008, our coarray-based language extensions include some
additional features:

• process subsets (§2.1), which support coarrays, col-
lectives, and relative indexing for pairwise operations

• topologies, which augment teams with a logical com-
munication structure (§2.2)

• dynamic allocation/deallocation of coarrays
and other shared data (§2.3)

– local variables within subroutines: declaration
and allocation of coarrays inside procedures scope
is critical for library based-code.

– team-based coarray allocation and deallocation

– global pointers in support of dynamic data struc-
tures (§2.4)

• enhanced support for synchronization (§2.5) for
fine control over program execution

– safe and scalable support for mutual exclusion
(§2.5.1)

– events, which provide a safe space for point-to-
point synchronization (§2.5.2)

– split-phase barriers (§2.5.3) for overlapping com-
munication and computation

• collective communication (§2.6)

• asynchronous communication support (§2.7) for
hiding communication latency

• a memory model (§2.8) that enables one to trade
ease of use for performance

Most of these ideas are inspired by features in MPI [11] and
Unified Parallel C [3]. Here, we describe their realization as
a cohesive whole to support parallelism in Fortran.

2.1 Process subsets
Processor subsets is a useful abstraction for decomposing
work in a parallel application. Processor subsets can be used
in coupled applications (e.g., ocean and atmosphere subsets
in a climate application) as well as within dense matrix
numerical computation such as matrix decomposition and
solver for linear equations (e.g., finding pivot element and
exchange rows within column subsets and broadcast factored
panel across row subsets). Earlier drafts of Fortran 2008 in-
cluded support for image teams; however, these teams were
designed solely to support collective communication. Here
we describe a broader vision for teams.

In Coarray Fortran 2.0, a team is a first-class entity that con-
sists of an ordered sequence of process images. Teams need
not be disjoint and a process image may be a member of
multiple teams. A team serves three purposes. First, it rep-
resents a set of process images. This set of images can serve
as a domain onto which coarrays may be allocated. Second,
it provides a namespace within which process images and
coarray instances can be indexed by an image’s rank r in a
team t, where r ∈ {0..team_size(t) - 1}, rather than an
absolute image ID. As identified by Skjellum [10], relative
indexing by rank is particularly useful for supporting the
development of libraries, where code needs to be reusable
across sets of processor images. Third, a team provides a
domain for collective communication.

When a CAF program is launched, all process images are ini-
tially part of a pre-defined team known as team_world. New
teams may be constructed from existing teams by using the
collective team_split and team_merge operations shown in
Figure 1. The split operation was inspired by the functional-
ity of MPI’s MPI_Comm_split [7]. As with MPI_Comm_split,
each process image invoking team_split on an existing team
provides a positive integer color (or color_undefined) and
a key. Images that supply the same positive value for color
will be assigned to the same new subteam. If an image pro-
vides the value color_undefined, it will not be assigned a
new subteam. Members of a subteam result are ordered by
the supplied key; if two members of the existing team supply
the same color and key, their rank in the new team will be
ordered by their rank in existing_team. The merge opera-
tion, for its part, constructs a team that is the union of all
supplied teams; it is thus the inverse of the split operation.

As is well understood, through judicious choice of color and
key, one can use team_split to create a new team in which

team split(existing_team, color, key, new_team,
other colors = result_colors,
other teams = result_teams,
err msg = emsg_var)

color and key are integers
result_colors is a vector of integers
existing_team and new_team are team variables
result_teams is a vector of team variables
emsg_var is a scalar character variable

team merge(existing_teams, new_team)

existing_teams is a vector of team variables
new_team is a team variable

Figure 1: Forming new teams: team_split and
team_merge.

the participating process images are simply a permutation
of the images in the existing team, or to create one or more
subset teams. One might create a new team that is a per-
mutation of an existing team to order process images within
the new team so that adjacent images are closer in the phys-
ical topology of the target platform on which the program
is executing.

A new idea here is the ability to bind additional teams
by providing an optional result_colors argument to
team_split. In the simplest use of team_split, each process
image receives the identity of the subteam to which it be-
longs as new_team based on the color argument. However,
one can receive the identities of additional teams, which
function like MPI intercommunicators, by supplying the op-
tional arguments result_colors and result_teams. Be-
tween splitting and merging, one can construct a team of
any arbitrary subset of process images. For example, to
construct both column teams and an “even columns” team
in a two-dimensional mesh, one could split the mesh into two
even/odd column teams and then split those into individual
columns. Alternatively, one could split the entire mesh into
column teams and then reassemble the even columns into
a single team. Programmer convenience would be the sole
distinction between the two approaches.

A team constructed with team_split can be dismissed with
a call to team_free (similar to MPI’s MPI_Comm_free) after
it is no longer needed. When a team is freed, its allocated
resources are released and the team no longer exists.

Data allocation. Both Numrich and Reid’s original CAF
and the Fortran 2008 working draft require that coarrays be
allocated across all process images. For applications where
processor subsets need to work independently, it is unreason-
able to ask that all processors be involved if a subset needs
to dynamically allocate some shared data. Second, if one
writes a parallel library that might be used concurrently by
different processor subsets, it is unreasonable to require that
all shared data allocated by the library (a) be known to the
library’s callers or (b) be associated with global variables
within the library package. These observations led to our

double precision, target, allocatable :: ab(:,:)[*]
double precision, allocatable :: w(:)[*]
double precision, pointer :: a(:,:),b(:)
team :: rteam,cteam
integer :: m,n,p,r,np,bufsize
integer :: me,myrow,mycol,nprow,npcol,lb,clb,blksize,ierr

np = team_size(team_world)
me = team_rank(team_world)
mycol = me / nprow
myrow = me - mycol * nprow

! each image allocates a coarray ab, assign pointers a,b
allocate(ab(m,n+1)[@team_world])
a => ab(1:m,1:n)
b => ab(1:m,n+1)

! create row and column teams as subteams of team_world
call team_split(team_world,myrow,mycol,rteam,ierr)
call team_split(team_world,mycol,myrow,cteam,ierr)
...

! allocate and access a coarray within a with team block
with team cteam
allocate(w(1:bufsize)[])
w(lb:lb+blksize-1)[p] = a(r,clb:clb+blksize-1)

end with team

! release team resource, deallocate coarray ab
call team_free(rteam,cteam)
deallocate(ab)

Figure 2: Allocating and accessing coarrays on pro-
cessor subsets.

design, which supports dynamic allocation of coarrays on
processor subsets, and dynamic allocation of coarrays into
local variables. Unlike prior proposals, we only allow one
to specify a single codimension for a coarray in its declara-
tion. Rather than supporting multidimensional coarrays, we
support more general structured indexing of process images
through topologies associated with teams, which we describe
in the next section.

Although coarrays are associated with process images, each
coarray allocation or indexing operation is explicitly or im-
plicitly associated with a team. When one allocates or
indexes a coarray, one may specify an explicit team. If
no team is specified explicitly, the default team, known as
team_default, is used. When a CAF program is launched,
team_default is set to team_world. A with team state-
ment (inspired by the with statement in PASCAL) is a
block structured construct for setting the default team,
team_default within its scope. Unlike PASCAL’s with,
CAF 2.0’s with team has dynamic scope, meaning that its
binding for the default team applies not only to the code lex-
ically enclosed in the with team block, but also to any code
called from within the block. We use LIFO semantics for dy-
namically nested with team statements. When one or more
coarrays are allocated on images associated with a given
team, a barrier synchronization is performed on the team to
ensure that all coarrays have been allocated and are ready
for use. Indexing with a codimension is done with a relative
rank with respect to an explicit or default team. Figure 2
shows examples of allocating coarray variables across differ-

ent teams specified both explicitly (using @) and implicitly
(using a with), using team_size and team_rank primitives
to interrogate the team characteristics, and indexing coar-
rays with respect to the column team cteam inside a with

team block.

2.2 Topologies
Fortran 2008 and earlier flavors of CAF only provide multi-
dimensional coarrays as a form of structured namespace for
interprocessor communication. Any other structured orga-
nization for indexing process images must be implemented
in user code using arithmetic on image IDs or using index
arrays. In CAF 2.0, we associate a logical topology with a
team to provide a structured namespace for intra-team com-
munication that is relative to members’ ranks in the team,
not to their absolute image ID. Like MPI, CAF 2.0 supports
two types of topologies: Cartesian and graph.

For CAF 2.0 we have settled upon a one to one association
between teams and topologies. Although it may seem desir-
able to change the topology for a team, we note that calling
team_split with a constant for the color parameter allows
one to create a clone of the team that has not yet been asso-
ciated with any topology; a different topology can be used
in conjunction with a team’s clone.

2.2.1 Topology API
To associate a topology with a team, one invokes topol-

ogy_bind, which has parameters for the team and the topol-
ogy to be associated, and returns an error if a topology has
already been associated with the team. The programmer
may either specify an ordered set of processor images to
map onto the topology, or use an overloaded version of the
function that asks the CAF runtime to bind the topology
with a good mapping to the underlying processor fabric. Fi-
nally, topology_get extracts the topology associated with a
team, or returns an error if there is none.

Graph topology. Any topology can be expressed as a
graph G=(V,E). To create a graph topology in CAF 2.0, one
simply calls topology_graph(n, c), where n is the number
of nodes in the graph, and c is the number of edge classes.
For an undirected graph, one might use a single edge class:
neighbors. For a directed graph, one could use two edge
classes: successors and predecessors. Additional flavors of
edge classes could be used to distinguish edges within or
between processor nodes. Our general interface leaves it to
the imagination of the user. To populate edge classes in
graph g, one may call graph_neighbor_add(g, e, n, nv)

to add one or more image neighbors (nv can be a scalar
or a vector value) to edge class e for image n. The opera-
tion graph_neighbor_delete(g, e, n, nv) can be used in
the course of updating g’s edges. Note that not every im-
age needs to specify every edge connection; it is sufficient
to declare the edges attached to the image’s node and have
the CAF runtime construct the full topology from this dis-
tributed information.

To index a scalar coarray f using a graph topology g associ-
ated with a team t, one uses the syntax f[(e,i,k)@t]. The
tuple (e, i, k) references the kth neighbor of image i in

allocate(type_spec :: allocation_list,
stat = stat_var,
err msg = emsg_var,
source = src_expr,
shared = is_shared)

type_spec is an intrinsic or derived type*
stat_var is a scalar integer variable*
emsg_var is a scalar character variable*
src_expr is a scalar character variable*
is_shared is a scalar logical variable†

* Fortran 2003 feature.
† Proposed Coarray Fortran extension.

Figure 3: The allocate statement.

edge class e in the topology bound to t. If the team t is im-
plicit (e.g., inherited from a with statement or team_world),
the parentheses of the tuple may be omitted for convenience,
simplifying the syntax to f[e,i,k]. One can use the intrin-
sic graph_neighbors(g, e, n) to determine the number of
image n’s neighbors in edge class e in graph g.

Cartesian topology. In a sense, Cartesian topologies are
just a subset of general graph topologies; however, they
are common enough to merit explicit treatment and custom
support. To define a Cartesian topology, one calls topol-

ogy_cartesian, which takes as parameters the extent of
each dimension. As toroidal topologies are common for peri-
odic boundary conditions, a negative extent for a dimension
indicates that the topology of the dimension is circular.

Accessing a node in a Cartesian topology can be
done by specifying a comma-separated tuple of indices
(d1, d2, d3, ..., dn) where one would otherwise specify an image
rank, e.g. my_data(3)[(x+1, y+1)@team_grid]. As with
graph topologies, if the team is implicit, one may omit the
tuple’s parentheses; in this way, we support syntax as simple
as multidimensional coarrays, although our indexing sup-
port is more general in that any dimension of the Cartesian
topology may be circular for periodic boundary conditions.

It is also highly desirable to support relative indexing within
a topology. We do this by placing the offsets in parentheses
and prepending a + sign: foo[+(3,-4)] specifies an offset of
(+3, -4) from the current image’s position in a 2D Carte-
sian topology. Similarly, foo[+(-1),0] is the first column
of the previous row in a 2D Cartesian topology; note that in
this example, the first subscript is relative and the second is
absolute.

2.3 Allocate statement
Executing an allocate statement associates storage with a
pointer or allocatable. Figure 3 shows the components of an
allocate statement. For CAF 2.0 we introduce a new op-
tional argument SHARED, which indicates whether the target
object should be allocated in private memory of the image,
or in shared memory co-located with the image. Data ac-
cessible from coarrays must be allocated in the shared seg-
ment. The shared specifier is necessary because when data
is allocated for a linked shared data structure in a parallel

program, one typically allocates and initializes an object be-
fore linking it into a shared structure. Only as an object is
linked does it become clear that it should be shared.

2.4 Pointers
As Coarray Fortran was defined in 1998, pointer com-
ponents were allowed within a coarray of a user-defined
type. It was legal to remotely dereference a pointer compo-
nent within a coarray. Given a user-defined type GRAPH
with a pointer component edgelist(:) and a coarray g

of type GRAPH, on image q could execute a remote ac-
cess g[p]%edgelist(i), which would dereference the remote
pointer edgelist on image p. The pointer component edge-
list could only be associated with data on one’s local im-
age. This style of pointer enables one to allocate and access
shared data of size that differs among process images. How-
ever, this style of pointer is insufficient for remotely manip-
ulating linked data structures.

Consider a distributed hash table implemented using bucket
chains. One might want to count the entries in a remote
bucket list by writing a loop like the following:

item = table[p]%head

count = 0

do

if (.not. associated(item)) exit

count = count + 1

item => item%next

enddo

With the limited pointers originally proposed for CAF, it
would not be possible to write such a loop because item

would need to point to remote data.

To support construction and manipulation of linked
distributed data structures, we propose the attribute
copointer to declare a pointer that one can associate with
shared data that may be remote. To ensure that accesses
to remote data are textually identifiable, we propose that
one add an empty bracket pair when dereferencing a remote
copointer. We propose the intrinsic imageof(p) to deter-
mine the target image for a copointer. A typical use of
imageof would be to determine whether a copointer is as-
sociated with data on the local image; if so, one can drop
the empty bracket pair and access the pointer target locally
more efficiently. Figure 4 shows examples of how one may
associate, use, and inspect a copointer.

2.4.1 Copointers and parameter passing
When passing a coarray or coarray-based object to a func-
tion or procedure, one has two options. To pass it by value,
one can employ the standard Fortran idiom of wrapping it in
parentheses, thereby converting it to an expression and forc-
ing an evaluation. Alternatively, one can pass by reference
by passing a copointer to the object. A copointer may be
passed to a procedure by reference only if the corresponding
dummy argument for the procedure is a copointer type.

2.5 Synchronization
2.5.1 Mutual exclusion

Based on our feedback [6], locks were added to the most
recent working draft of Fortran 2008 to support mutual ex-

integer :: wrank, wsize, a(:,:)[*]
integer, copointer :: x(:,:)[*]

allocate(a(1:20, 1:30)[@team_world])
wrank = team_rank(team_world)
wsize = team_size(team_world)

! associate copointer x with a remote section of a coarray
x => a(4:20, 2:25)[mod(wrank + 1, wsize)]

! imageof intrinsic returns the target
! image for x as a rank in team world
prank = imageof(x)

if (prank .eq. wrank) then
! update a location on the local image
! (unchecked) through the copointer x
x(7,9) = 4

else
! update a location on a remote image
! through the copointer x
x(7,9)[] = 4

endif

Figure 4: Using a copointer.

clusion. We further support deadlock-free multi-lock syn-
chronization by allowing the programmer to transparently
acquire a set of locks as a single logical operation.

CAF 2.0 provides three language constructs for mutual ex-
clusion.

1. Lock. This is the standard mutual exclusion state
variable; lock_acquire and lock_release statements
acquire and release it, respectively.

2. Lockset. Locksets foster safety in multi-lock opera-
tion by performing acquires of component locks in a
globally-defined canonical order.

3. Critical section. Critical sections in CAF 2.0 are
simply a block-structured construct for acquiring and
releasing a lock or lockset, either of which may be dy-
namically allocated.

Creating a lock or lockset is not a collective operation;
neither is acquiring a lock, lockset, or critical section.
To associate a lockset with specified locks, one uses the
lockset_create statement as shown in Figure 5.

Figure 5 shows that lockset ls can be acquired by image 1
if and only if all of locks l1, l2, and l3 are released (or not
yet acquired) by images 2, 3, and 4 respectively. This ex-
ample shows the advantages of using locksets: convenience,
efficiency, and deadlock-freedom.

2.5.2 Events
Because costly group communication is not always neces-
sary to support the coordination needs of applications, we
envision point-to-point synchronization via events. At the
most basic level, an event is a shared counter object that
supports two operations: an atomic increment (a notify

operation), and spinning until an available increment occurs

lock :: l1, l2, l3
lockset :: ls
ls = lockset_create(/ l1, l2, l3 /)

! ... image 1 ! ... image 2 ! ... image 3 ! ... image 4
lock_acquire(ls) lock_acquire(l1) lock_acquire(l2) critical(l3)
... ! critical region

lock_release(ls) lock_acquire(l2) lock_release(l2) end critical
... ...

lock_release(l2)
lock_release(l1)

Figure 5: Example of using lock, lockset, and critical. In this example, image 4’s use of the critical construct
simplifies programming and ensures that l3 is unlocked.

(a wait operation). Our event implementation is thus essen-
tially a user-mode local-spin implementation of a counting
semaphore. Images may allocate coarrays of events as their
needs demand. Remote update via event_notify and local
spin operations using event_wait are all that is needed to
effect safe one-way synchronization between pairs of images.
Unlike Fortran 2008’s sync images, events offer a safe syn-
chronization space: libraries can allocate their own events
that are distinct from events used in a user’s code.

2.5.3 Split-phase barriers
Split-phase barriers enable one to overlap communication
with computation. One initiates a split-phase barrier with
team_barrier_async to signal that an image has completed
all work before the barrier. One awaits the arrival of all
other images in a team at a team barrier using async_wait,
a general query awaiting the completion of an asynchronous
operation identified by a handle. When applied to a handle
for an asynchronous barrier, an async_wait will block until
all other images in the team have initiated the barrier with
team_barrier_async, implicitly proclaiming that they have
completed all work before the barrier. Split-phase barriers
can operate on processor subsets. Thus, multiple split-phase
barriers can be simultaneously active – even for the same
image – without conflict [6].

The syntax of our split-phase barrier is as follows:

team_barrier_async(handle [, team])

async_wait(handle)

If no team is specified, the current default team is used (see
the with team construct in §2.1). The handle parameter is
an eight-byte integer.

2.6 Collective communication
Collective subroutines are not new in Coarray Fortran; they
were part of the 2007 draft of Fortran 2008, which also in-
cludes collective team reduction and some pre-defined col-
lective subroutines such as co_sum, co_max and co_product.
However, the emerging Fortran 2008 standard does not in-
clude these features even though collective operations are
widely used in parallel applications. It is widely known that
built-in collective operations are likely to provide better per-
formance and portability if they are implemented as part of
a language runtime rather than having users roll their own.

We propose some collective statements for Coarray Fortran
2.0 as shown in Table 1. These statements are mainly in-

spired by MPI’s collectives based on two-sided synchronous
communication. In the next section, we discuss asyn-
chronous versions of these collectives.

Most collective statements require a local data variable
source (var_src), a target variable (var_dest) and option-
ally a team where all image members will participate. If the
team is not explicitly specified, then the current default team
specified in an enclosing with statement or team_default

will be used. Unlike the proposed collective statements by
Reid and Numrich [9], all collectives in Coarray Fortran 2.0
do not require coarrays as its input/output data. As shown
in Table 1, both var_src and var_dest variable can be local
variables. For team_broadcast, the first argument (var) is
a local variable that acts as the source variable for the root
image, and as the target variable for other images.

When designing Coarray Fortran 2.0, we recognized that
there are two types of collective reduction operations: those
that are replication oblivious, where a value can be pro-
cessed more than once by a reduction without changing the
result, and those that are not. Some examples of replica-
tion oblivious operators include min, max, and, and or. We
believe that it is worth identifying replication oblivious op-
erators because reductions using them can be implemented
efficiently by using a special communication pattern. The
final optional ro boolean argument to a reduction opera-
tion indicates whether the reduction operator is replication
oblivious.

In addition to the predefined collective operators shown in
Table 1, Coarray Fortran 2.0 also supports user-defined op-
erators for reductions. Instead of supplying a predefined
operator to a reduce, a user can specify a subroutine that
takes three arguments: two read-only inputs and the output,
as shown below:

! in1 and in2 are input arguments

! out is the output result

subroutine reduceop(in1, in2, out)

For Coarray Fortran 2.0, we introduce team_sort to sort
arrays (whether they are coarrays or not) within a team.
This operation requires a user-defined comparison function
of the following form:

! in1 and in2 are input arguments

! returns: +1 if in1>in2, 0 if in1==in2,

! -1 if in1<in2

integer function comparison(in1, in2)

Table 1: Collective statements supported in Coarray Fortran 2.0
Statement Description Syntax
team_broadcast broadcasts a data from an image to all im-

ages in a team
team_broadcast(var, root_rank [, team])

team_gather collects individual data from each image in
a team at one image

team_gather(var_src, var_dest, root_rank [, team])

team_allgather gathers data from all images and distribute
it to all images

team_allgather(var_src, var_dest [, team])

team_reduce reduces data, the result is stored to an im-
age of the team

team_reduce(var_src, var_dest, root_rank, operator [, team] [, ro])

team_allreduce reduces data, the result is stored to all im-
ages of the team

team_allreduce(var_src, var_dest, operator [, team] [, ro])

team_scan performs partial reduction (scan), each im-
age store the result of reduction from its
neighbor

team_scan(var_src, var_dest [, team])

team_scatter distributes individual data from an image
to each image in a team

team_scatter(var_src, var_dest, root_rank [, team])

team_shift moves data from another image at an offset
within a team

team_shift(var_src, var_dest, image_offset [, team])

team_sort sorts arrays of the same size and type
within a team

team_sort(var_src, var_dest, comparison_function [, team])

For most statements:
typedef::var_src local source variable
typedef::var_dest[*] target Coarray Fortran variable
integer::root_rank the rank of the root image
team::team process subset (default team if not specified)

The function returns -1 if the first input is less than than
the second one, returns 0 if they are equal, and +1 if the
former is greater than the latter.

2.7 Asynchronous communication
To achieve scalable performance in petascale machines, over-
lapping communication with computation is essential. For
example, the implementation of High Performance LIN-
PACK (HPL) [1] uses a customized asynchronous ring-based
broadcast implementation to overlap the latency of the com-
munication and panel factorization with panel update oper-
ations.

In Coarray Fortran 2.0, we will provide asynchronous sup-
port for collective and one-sided communication with an
asynchronous progress engine and split-phase implemen-
tations of communication primitives. Users make calls
to team_comm_async to start an asynchronous communi-
cation. comm represents any communication with asyn-
chronous support, such as broadcast or get and put for
remote read and write of coarrays. Each team_comm_async

subroutine will return a handle to its caller using an out-
put argument. A handle from a team_comm_async may be
used in a call to async_is_complete to query the status of
the operation, or to async_wait, which will block until the
operation completes.

We support a progress statement at the language level to
give users more control over asynchronous communication.
progress translates to an invocation of the CAF runtime’s
progress engine to advance pending asynchronous communi-
cations. We expect a CAF compiler to automatically insert
calls to the progress engine at regular intervals in CAF code,
similar to the way Java compilers insert garbage collection
safepoints in generated bytecode. Users can selectively dis-

able the progress engine around performance-critical pro-
gram regions via a pair of compiler directives:

!$caf progress(manual)

...

!$caf progress(auto)

2.8 Memory consistency models
Although a strict consistency memory model is helpful to
ensure correctness of the program, it can preclude optimiza-
tions important for program performance. Programmers
and compilers need the flexibility to effect relaxed instruc-
tion ordering for regions of code where overall system per-
formance is the paramount concern. Our vision for Coarray
Fortran supports three memory models that may be selected
for program regions via compiler directives:

!$caf consistency(strict).The strict consistency model
enforces sequential consistency for coarray communication.
Coarray accesses may only execute after previous ones com-
plete, and all updates become visible immediately. This is
the default model.

!$caf consistency(relaxed). Under the relaxed consis-
tency model, memory get and put operations can be re-
ordered by the compiler and runtime system; however, pro-
cessor consistency is guaranteed: absent some other inter-
vening write, an image is guaranteed to read back the last
value it has written.

!$caf consistency(none). Unlike the relaxed model, an
image will not necessarily read back the latest value it has
written to a remote node, even if there are no intervening
writes by other images. This can occur, for example, in
complex interconnection networks with dynamic routing if
the read is routed as to arrive at the destination image node

ahead of the write. From an implementation perspective,
this mode essentially disables all runtime control over or-
dering to maximize performance; programmers should only
use it in cases where they are sure that it is safe (e.g., they
don’t read values they have just written) and high perfor-
mance is critical.

2.9 Binding coarrays
The mechanism we propose for sharing coarrays between
a pair of teams involving disjoint sets of processors is to
have them bind a coarray using a publish/subscribe model.
For instance, a team performing an ocean simulation might
want to share a sea surface temperature coarray with an at-
mosphere team. The atmosphere and ocean teams can ob-
tain information about one another by having a team_split

operation (described in Section 2.1) return multiple result
teams. To share a coarray between a pair of teams, each im-
age in the pair of teams involved performs a coarray_bind

as follows: coarray_bind(coarray, nonlocal_team). The
images of the ocean team export the sea surface temperature
coarray ocean_sst to the atmosphere team a_team. The at-
mosphere team indicates that it will reference the imported
sea surface temperatures as a coarray atmos_sst and that
it expects to receive information about how to access this
data from the ocean team o_team. So, the corresponding
operations are

ocean team:

coarray_bind(ocean_sst, a_team)

atmosphere team:

coarray_bind(atmos_sst, o_team)

These matching calls make it possible for the atmosphere
team to access the coarray data allocated by the ocean team
by referencing atmos_sst.

3. IMPLEMENTATION
Our implementation of Coarray Fortran 2.0 is a work in
progress. Here, we sketch our implementation strategy,
which is based on the GASNet communication library [2].
We use GASNet’s get and put operations to read and write
remote coarray elements. We further use GASNet’s active
message support to invoke operations on remote nodes. This
capability is used during team formation and to look up in-
formation about remote coarrays so that one can read and
write them directly.

3.1 Team representation
We use a scalable representation of image teams that is
based on the concept of pointer jumping (Figure 6). Each
image in a team of size S has dlog Se levels of pointers to a
successor and a predecessor. For image i, pointers on level
k link i to the representations of team members at ranks
(i + S − 2k) mod S and (i + 2k) mod S.

With this representation, each image has enough informa-
tion to locate an image at any rank. To reach rank j in a
team from rank i in a team of size S, one can obviously do
this in at most log S steps by following a chain of pointer-
jumping links at distances corresponding to the bits in i⊕ j.
Less obvious is that for rank i to locate j, one can often
follow far fewer links than the number of one bits i ⊕ j by
exploiting the circularity of our doubly-linked list based rep-
resentation, and making use of both forward and backward

Figure 6: Members of a team of size S are linked
in dlog Se doubly-linked circular lists. In list i, 0 ≤
i < dlog Se, a team member at rank j is linked to
team members (j + S − 2i) mod S and (j + 2i) mod S,
an organization inspired by pointer jumping.

links (e.g., instead of using three forward power-of-2 hops
to accomplish a route of distance +7, one can use a forward
route of distance 8 and backward route of distance 1). For
a team of size S, where S is not a power of two, one can
also exploit the fact that (i − j) mod S 6= (j − i) mod S.
For performance, we have images cache information about
how to directly communicate with a fixed modest number
of frequent communication partners within one’s team.

3.2 Team formation
Scalable distributed team formation via team_split is ac-
complished by sorting (color, key, rank) tuples using paral-
lel bitonic sort, left and right shift operations to determine
team boundaries, along with segmented scans to compute
one’s rank within a team and disseminate the identity of
the first and last members of the team and the team size.
Subteams are assembled once each image knows its left and
right neighbors at distance one in the circular order of its
subteam, the size of the subteam, and its rank in the sub-
team. Our approach enables us to form a team without
using more than O(log2 P) space on any image; we use this
much space as a scratch buffer for parallel bitonic sort.

3.3 Collective operations
Our pointer-jumping based representation for teams con-
tains all of the direct connections necessary to support col-
lective communication within a team.

Blocking Barrier The dissemination barrier algorithm [5]
uses all of the direct connections in our pointer-jumping rep-
resentation for teams. On a team of size S, it involves dlog Se
rounds of communication. In round i, 0 ≤ i < dlog Se, each
image sets a flag on a successor at distance 2i and spin waits
locally.

Replication-oblivious reductions When a reduce or
allreduce collective is given a replication-oblivious opera-
tor, i.e., one for which repeated incorporation of a datum
would not change the result, we execute the reduction using
a dissemination-based [5] communication pattern.

Broadcast and reductions Tree-based broadcast and re-
duction operations naturally map onto direct connections
in our pointer-jumping representation for teams. For both
broadcast and reductions, we use a binomial tree [12] based
communication pattern. Since the linked lists in our pointer-
jumping representation are circular, they naturally support
broadcasts and reductions rooted at any node. Allreduce

maps onto direct connections of the pointer-jumping repre-
sentation equally well.

3.4 Locks and events
We support spin-waiting on remote locks and events. Spin
waiting on remote locks or events requires only a constant
number of messages across a machine’s interconnect. Wait-
ing on a remote lock or event causes a record indicating the
waiting image to be enqueued on the remote node. At the
appropriate time, an active message will signal the waiting
image.

3.5 Copointers
We represent a copointer as a tuple consisting of the target
image ID and a Fortran 90 pointer. The target image ID is
the image’s rank in team_world. We initialize a copointer’s
Fortran 90 pointer for a section of a remote coarray by sim-
ply copying the dope vector for the remote coarray to the
local image and locally computing the proper subsection.
When accessing remote data through a copointer, the data
in the copointer representation suffices to synthesize a get

or put operation to access a virtual address in the target
image.

4. SUMMARY AND FUTURE WORK
We have sketched a new vision of Coarray Fortran and are
actively implementing the features described herein. CAF
2.0 is a work in progress; many details of syntax remain to
be designed. Nevertheless, the path forward is clear and our
new design is vastly more expressive than prior coarray ex-
tensions. CAF 2.0’s support for teams consisting of process
subsets, coarrays allocated on processor subsets, dynamic
allocation of coarrays, copointers, collectives on process sub-
sets, and events for safe pairwise synchronization, represents
substantially richer support for parallelism than the coarray
extensions in Fortran 2008.

Once we have the core of CAF 2.0 complete, we plan to ex-
tend our design with support for remote invocation of spe-
cial functions that we call cofunctions. The motivation for
cofunctions is latency avoidance. However, adding cofunc-
tions to CAF leads to multithreaded images, which increases
programming complexity. If one can spawn a cofunction
remotely, one should also admit spawning cofunctions lo-
cally as asynchronous activities. Once we add cofunctions to
the language, we need a way to determine when cofunction
invocations have quiesced. We plan to use a block struc-
tured finish construct, as does IBM’s X10 programming
language. We are also looking at supporting Phasers, which
extend the Clock construct from X10 by adding support for
point-to-point synchronization to the already-present sup-
port for periodic barrier synchronization; however, we will

need to devise an efficient distributed implementation. Ex-
isting Phaser implementations are not suitable for large dis-
tributed memory systems. Once multiple threads are al-
lowed in images, an interesting question that arises is how
to prioritize execution between threads. It would seem that
the language model should offer some way to control the
priorities of activities. Exploring these issues is a topic of
future work.

5. REFERENCES
[1] A. Petitet and R.C.Whaley and J.Dongara and

A.Cleary. HPL - A Portable Implementation of the
High-Performance Linkpack Benchmark for
Distributed-Memory Computers, September 10, 2008.
http://www.netlib.org/benchmark/hpl.

[2] D. Bonachea. GASNet Specification, v1.1. Technical
Report UCB/CSD-02-1207, U.C. Berkeley, 2002.

[3] T. El-Ghazawi, W. Carlson, T. Sterling, and
K. Yelick. UPC: Distributed Shared-Memory
Programming. Wiley-Interscience, 2003.

[4] Fortran J3 Committee. Fortran 2008 Working Draft,
J3/09-007r1, March. 25, 2009. http://www.
j3-fortran.org/doc/standing/links/007.pdf.

[5] D. Hensgen, R. Finkel, and U. Manber. Two
algorithms for barrier synchronization. International
Journal of Parallel Programming, 17(1):1–17, Feb.
1988.

[6] J. Mellor-Crummey, L. Adhianto, and W. N. Scherer
III. A critique of co-array features in Fortran 2008.
Fortran Standards Technical Committee Document
J3/08-126, February 2008. http://www.j3-
fortran.org/doc/meeting/183/08-126.pdf.

[7] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, Version 1.1.
http://www.mpi-forum.org/docs/mpi-11-html/

mpi-report.html, June 1995.

[8] R. W. Numrich and J. Reid. Co-array Fortran for
parallel programming. SIGPLAN Fortran Forum,
17(2):1–31, 1998.

[9] J. Reid and R. W. Numrich. Co-arrays in the next
Fortran standard. Sci. Program., 15(1):9–26, 2007.

[10] A. Skjellum, N. E. Doss, and P. V. Bangalore. Writing
libraries in MPI. In A. Skjellum and D. S. Reese,
editors, Proceedings of the Scalable Parallel Libraries
Conference, pages 166–173. IEEE Computer Society
Press, October 1993.

[11] M. Snir, S. W. Otto, S. Huss-Lederman, D. W.
Walker, and J. Dongarra. MPI: The complete
reference. MIT Press, Cambridge, MA, 1996.

[12] J. Vuillemin. A data structure for manipulating
priority queues. Commun. ACM, 21(4):309–315, 1978.

