
Hiding Latency in Coarray Fortran 2.0

William N. Scherer III, Laksono Adhianto, Guohua Jin,
John Mellor-Crummey, and Chaoran Yang
Department of Computer Science, Rice University

{scherer, laksono, jin, johnmc, chaoran}@rice.edu

ABSTRACT
In Numrich and Reid’s 1998 proposal [17], Coarray Fortran
is a simple set of extensions to Fortran 95, principal among
which is support for shared data known as coarrays. Re-
sponding to shortcomings in the Fortran Standards Com-
mittee’s addition of coarrays to the Fortran 2008 standards,
we at Rice envisioned an extensive update which has come
to be known as Coarray Fortran 2.0 [15]. In this paper, we
chronicle the evolution of Coarray Fortran 2.0 as it gains
support for asynchronous point-to-point and collective op-
erations. We outline how these operations are implemented
and describe code fragments from several benchmark pro-
grams to show we use these operations to hide latency by
overlapping communication and computation.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Constructs
and Features; D.1.3 [Programming Techniques]: Con-
current Programming—parallel programming

Keywords
Coarray Fortran, Parallel programming, Asynchrony, Asyn-
chronous collectives

1. INTRODUCTION
Over the last few years, as multicore processors have become
pervasive, there has been a growing urgency to develop sim-
pler models for efficient parallel programming. Many prob-
lems in scientific and technical computing have computa-
tional needs that require more than just individual multi-
core processors. The use of clusters and distributed mem-
ory supercomputers to solve problems in this space is perva-
sive. Today, MPI [24] is the dominant parallel programming
model for these systems. MPI has many benefits (portabil-
ity, scalability, high performance); however, it can be awk-
ward to use for some applications because of its two-sided
programming model.

PGAS’10, October 12–15, 2010, New York City, USA.

Over the past decade, there has been considerable inter-
est in developing higher level models for parallel program-
ming. Partitioned global address space (PGAS) languages
based on one-sided communication such as UPC [26], Coar-
ray Fortran [17], X10 [22], Chapel [4], Titanium [28] and
Fortress [21]. These languages are viewed as perhaps the
most promising direction for developing programming mod-
els for scalable parallel systems.

Coarray Fortran (CAF) was originally designed by Numrich
and Reid [17] as a small set of extensions to Fortran 95 to
support parallel programming. They envisioned CAF as a
model for SPMD parallel programming based on a static
collection of asynchronous process images (known as images
for short). In 2005, the Fortran Standards committee began
exploring the addition of coarray constructs to the emerging
Fortran 2008 standard. Their design closely follows Numrich
and Reid’s original vision.

Coarray Fortran 2.0 (CAF 2.0) is an extension of Coarray
Fortran that provides better expressiveness through features
such as process subsets, topologies, and fine-grain synchro-
nization. We outlined the motivation and vision for CAF
2.0 in a 2009 paper [15]1. In this paper, we augment CAF
2.0 with additional primitives that enable users to overlap
communication latency with computation. These features
are essential for scalable parallel performance. Specifically,
we propose the following additions to CAF 2.0:

• an asynchronous copy operation,

• asynchronous collective operations, and

• language support for shipping computation to remote
processors.

While our proposed primitive for asynchronous point-to-
point communication is one sided, we propose and justify
a two-sided design for asynchronous collective operations.
An integral part of our design for asynchronous operations
is a uniform mechanism for determining when they have
completed.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief summary of our prior design for Coar-
ray Fortran 2.0. Section 3 presents the design of our new

1Section 2 provides an overview of CAF 2.0 features.



language asynchronous primitives that enable communica-
tion to be overlapped with computation. Section 4 describes
how these features are used in some example application
kernels. Section 5 provides a sketch of how we have imple-
mented these features in our CAF 2.0 prototype. Section 6
discusses related work and we conclude in Section 7.

2. BACKGROUND
To make this paper self-contained, we briefly summarize the
overall structure of Coarray Fortran 2.0 (CAF 2.0) described
in earlier work [15]. CAF 2.0 differs significantly from the
coarray-based extensions being incorporated into Fortran as
part of the 2008 standard. While Fortran 2008 focused on
adding the minimum new features to provide some support
for parallelism, CAF 2.0 takes a rather different approach,
adding a richer set of features to provide what we believe is
a productive parallel programming model. Below we outline
the key abstractions that CAF 2.0 adds to Fortran:

• process subsets, known as teams, which support
coarrays, collective communication, and relative index-
ing for pairwise operations
• topologies, which augment teams with a logical com-

munication structure
• dynamic allocation/deallocation of coarrays

and other shared data

– pointers, allocatable coarrays, and dynamic allo-
cation of coarrays with locally-scoped names

– team-based coarray allocation and deallocation
– global pointers, which are essential for represent-

ing and traversing distributed linked data struc-
tures

• enhanced support for synchronization for fine
control over program execution

– safe and scalable support for mutual exclusion
– events, which provide a safe space for point-to-

point synchronization
– split-phase barriers for overlapping communica-

tion and computation

• collective communication
• a memory model that enables one to trade ease of

use for performance

Most of these ideas are inspired by features in MPI [24] and
Unified Parallel C [5]. These features provide a core for
comprehensive support for parallelism in Fortran.

A clear omission in the feature set above is support for mul-
tithreading, which is necessary for exploiting the full poten-
tial of multicore and manycore architectures. It is missing
not because we don’t think that it is important; but rather
because we have not yet explored the underlying implemen-
tation considerations that will be important for producing
an appropriate design.

In this paper, we augment this feature set with new support
for both pairwise and collective asynchronous operations.
This addition provides critical support for hiding communi-
cation latency by overlapping it with computation.

event_init(event e)

event_notify(event e)

event_wait(event e)

event_trywait(event e, logical success)

event_getid(event e, integer(8) id)

Figure 1: CAF 2.0 event API.

2.1 Events
Events were previously described elsewhere [15]; we review
their semantics here to provide context for their use to sig-
nal the completion of asynchronous operations. We origi-
nally conceived events as a mechanism to support point-to-
point synchronization. For that purpose, one allocates one
or more event scalars or arrays. Figure 1 shows the opera-
tions on events with the types of their arguments and return
values. One can think of an event as a counting semaphore.
One must invoke event_init to initialize the count to zero
before any other operation. An event_notify increments
an event’s count. Waiting for an event will delay until a
process image can atomically decrement an event’s count
from a value greater than zero. event_trywait is a non-
blocking operation that will attempt to atomically decre-
ment an event’s count from a positive value; it will set the
logical variable success to indicate whether it succeeded or
not. Additionally, every event has associated with it a 64-
bit unique ID. The event ID may be retrieved via a call to
event_getid. Although event IDs are not needed by other
operations on events, as we explain in Section 3.4, these IDs
make it possible for one to operate on sets of events. Typi-
cally, events are used as a one-way synchronization channel
between process image pairs; one process notifies the event
and the other awaits notifications; however, it is also possible
for multiple notifications to accumulate in a single event and
have a process wait for them all together, such as waiting on
NSEW neighbors in a stencil calculation. As described in the
next section, when used in conjunction with asynchronous
communication, an event need not be a coarray.

3. ASYNCHRONY IN CAF 2.0
In this section, we describe the design of the language fea-
tures in Coarray Fortran 2.0 for supporting asynchrony and
latency hiding. We start with the predicated asynchronous
copy, a one-sided point-to-point non-blocking communica-
tion. Then, we discuss support for asynchronous collective
operations. We finish the section by discussing function
shipping as a mechanism for executing a function on a re-
mote image.

3.1 Models of asynchrony
In Coarray Fortran 2.0, we support two models of synchrony.
In the explicit model, we post an event to signal that an oper-
ation has completed. This unifies the design and eliminates
the need for handles which other approaches require. Fur-
ther, it allows an expert user to write an event-driven pro-
cessing loop that can receive and react to any event that is
notified from among a set of expected notifications, making
use of the Coarray Fortran 2.0 eventset primitives described
in Section 3.4.



Alternatively, one can use the implicit model. Here, rather
than signaling an event when the operation is complete, we
provide synchronization to programmers via a dynamically
scoped, nestable finish block. All asynchronous operations
within a finish scope are guaranteed to be finished before
exiting the finish block. We note that this concept of fin-
ish blocks is from the X10 programming language [22]. Each
finish block is associated with a specific team, which may
be omitted to have the the runtime supply TEAM_DEFAULT.
Note that only implicit operations are guaranteed to be com-
plete at the close of a finish block; explicit operations are
allowed to escape.

3.2 Predicated asynchronous copy
On large-scale parallel systems, hiding communication la-
tency is essential if a program is to achieve high perfor-
mance. In studies with the HPC Challenge RandomAccess
and FFT benchmarks, we quickly recognized the need for
asynchronous data copies to overlap communication with
computation. In the benchmark codes, we initially identified
the need to overlap computation with streaming writes of re-
mote data. In particular, we wanted to issue a non-blocking
PUT to remote data and notify the consumer awaiting the
data when the PUT is complete; while this communication
and synchronization are in flight, we want to continue with
local computational work. Later, we identified a similar need
to overlap a GET communication with computation and de-
termine when the GET completes. We realized that under
many circumstances a compiler might not be able to de-
termine that it is safe to transform a GET or PUT into
a non-blocking form and overlap it with computation. In
particular, it can be very difficult to determine that a GET
or PUT could be overlapped with a procedure call without
changing a program’s semantics in the case when code is
being separately compiled. We realized that programmers
know what communication can and should be overlapped
with computation, and what CAF needs is a suitable lan-
guage construct to make it possible to express such asyn-
chronous communication.

As Coarray Fortran was originally conceived by Numrich
and Reid, there were no language constructs that enable
users to hide communication latency. In addition, their de-
sign included implicit memory fences at subroutine bound-
aries to avoid having a GET or PUT operation, in flight at a
procedure call, cause data races with accesses by a callee to
the target coarray [17]. A challenge was to create a design
for adding asynchronous copies to CAF that enables applica-
tion programmers to: (1) express that reading or writing of
remote coarray data may be overlapped with computation;
(2) make it possible to determine when such asynchronous
operations are complete; (3) have the language constructs
be sufficiently general to allow an application to await com-
pletion of pending asynchronous operations in any order; (4)
make the completion of asynchronous operations orthogonal
to program scopes, i.e. an application need not await com-
pletion of asynchronous operations within the same routine
in which they are issued; completion may be requested at
any point in the future by any routine whatsoever; and (5)
provide a syntactic construct that is easy to use.

To satisfy these criteria, we designed the asynchronous copy
primitive shown in Figure 2. In our design, copy_async is

copy_async(var dest, var src [, ev after] [, ev before])

var dest = a coarray reference target
var src = a coarray reference source
ev after = an optional event indicating that the

write to dest is complete
ev before = an optional event indicating that the

source data is ready

Figure 2: Asynchronous copy statement in CAF 2.0.

a statement rather than a subroutine in CAF 2.0. Both
the source and destination of the copy must be coarray ref-
erences. The source and destination may be scalar values,
whole arrays, or array sections. Either may refer to local
or remote coarray data. The events ev before and ev after
respectively indicate that the source data is ready to copy
and that the write of the destination data is complete. In
the implicit asynchrony model, ev after is not specified and
an end finish statement blocks until the write is complete.

The copy_async primitive is quite expressive. It can be
used for local-to-local, remote-to-local, local-to-remote, or
remote-to-remote copies. A local-to-local copy_async could
be used to hide the latency of a local copy operation by hav-
ing it executed asynchronously by another core or a DMA
engine. A typical use of a remote-to-local copy would be
for an asynchronous prefetch. If one specifies the optional
ev before event, the copy will not execute until ev before is
notified; this enables an application developer to specify a
predicated prefetch that will not begin execution until the
source data is available. A typical use of a local-to-remote
copy_async is to export to a remote node values that have
just been computed, such as depositing boundary layer data
into a ghost region on a remote processor. While copy_async
supports remote-to-remote copies for completeness, we don’t
have a compelling case for this use at present.

3.3 Asynchronous collective operations
Although they are widely used in parallel applications, the
current Fortran 2008 draft standard does not include collec-
tive operations; therefore, we previously proposed a set of
synchronous collective operations [15]. In this paper, we pro-
pose adding two-sided asynchronous collective operations to
Coarray Fortran 2.0. When designing asynchronous collec-
tives for a language with one-sided communication, one may
ask why not to use a one-sided design. A two-sided design
provides us two benefits. First, it enables each processor to
have explicit control of how many collective operations may
be pending on that processor at a time. Second, each proces-
sor has the flexibility to control buffer allocation and specify
where incoming results should be placed. Table 1 shows the
collective operations we propose adding to Coarray Fortran
2.0. There are two purposes for collective operations: com-
munication and synchronization; we discuss each of these in
turn.

3.3.1 Communication
Depending on the types of collected data output, there are
three kinds of collective communication. First, in all-to-one
collective communication like team_reduce_async and
team_gather_async, the result is gathered by one process



Statement Description
team_barrier_async([event] [, team]) barrier synchronization between image processes
team_broadcast_async(var, root[, event] [, team]) broadcasts data from an image to all images in a

team
team_gather_async(var_src, var_dest, root[, event] [, team]) collects individual data from each image in a team

at one image
team_allgather_async(var_src, var_dest[, event] [, team ]) gathers data from all images and distributes it to

all images
team_reduce_async(var_src, var_dest, root, operator[, event] [, team]) reduces data; the result is stored to an image of

the team
team_allreduce_async (var_src, var_dest, operator[, event] [, team]) reduces data; the result is stored to all images of

the team
team_scatter_async(var_src, var_dest, root[, event] [, team]) distributes individual data from an image to each

image in a team
team_alltoall_async(var_src, var_dest[, event] [, team]) sends distinct data from each image to every im-

age in a team
team_sort_async(var_src, var_dest, comparison_fn[, event] [, team]) sorts arrays of the same size and type within a

team

Argument descriptions:
typedef::var_src local source variable team::team process subset (default team if not specified)
typedef::var_dest[*] target Coarray Fortran variable event::event event variable (if using explicit asynchrony)
integer::root the rank of the root image

Table 1: Asynchronous collective operations in Coarray Fortran 2.0.

(named root). Second, in one-to-all collective communica-
tion like team_broadcast_async and team_scatter_async,
the root process sends data to all processes. Third,
all-to-all communication like team_allgather_async,
team_allreduce_async, and team_alltoall_async have
all processes participate in sending and collecting data.

Since processes can only know about coarray data on
the other processes, there is a chain of data exchange
between processes. Some collective communication like
team_reduce_async for MIN and MAX operations are repli-
cation oblivious, which means contributions from an im-
age can be processed more than once without chang-
ing the result. These collectives can be implemented
efficiently with the dlog(P )e depth dissemination pat-
tern [8]. Non-replication oblivious communication such as
team_gather_async and team_scatter_async can be imple-
mented with a tree algorithm.

Unlike asynchronous copy, we do not support predication for
asynchronous collective communication. While this would
be straightforward to implement, we have yet to identify a
use case for which it would be desirable.

3.3.2 Synchronization
Asynchronous barriers, also known as split-phased barriers,
have been known and studied for a long time now [7]. Their
semantics are straightforward: One API call declares that
an image has completed all work intended to precede the
barrier, and a second API call awaits the work of other im-
ages to be complete. Between the two calls, each processor
may perform an arbitrary amount of other work that does
not need to touch values that might yet still be changed by
other processes before the barrier in progress is complete.

Asynchrony in barriers is useful for two main reasons. The
classical purpose of split-phased barriers is to tolerate asyn-
chrony between process images. With normal barriers, if an

image completes all of its work for one stage of a compu-
tation, it is blocked until the other images complete their
work as well. Lack of asynchrony tolerance manifests it-
self as idling at the barrier. Split-phased barriers allow the
synchronization latency to be overlapped with work initi-
ated between the initiation of the barrier and its completion,
which reduces idling.

Second, it allows the overhead of performing the barrier itself
to be overlapped by useful computation. This is important
because barrier synchronization can be quite expensive.

Table 1 shows the Coarray Fortran 2.0 runtime inter-
face for the asynchronous barrier. To wait for the bar-
rier, one simply invokes event_wait on the event supplied
to team_barrier_async or closes the surrounding finish

block.

3.4 Function shipping
Another way to achieve high performance on large-scale par-
allel systems is to co-locate computation with remote data.
In the SPMD programming model, the standard owner-
compute approach partitions data and the responsibility for
its computation among processes. In practice, however, it
may occur that a locally-originated request for computation
needs to read and write remote data. In this situation, the
process could copy remote data to local memory, update it
locally, and write the data back. Alternatively, it can send
a closure that specifies a function and any necessary argu-
ments to the remote image for execution in its own locality
domain. The first approach suffers from the overhead of
two round trips of communication. The second, though it
reduces communication overhead, requires the programmer
to code for the computation on the remote process, separat-
ing it from its logical origin. This could make the program
more obscure and harder to maintain.



finish (team)

spawn f(table(i,j)[p], n)[p]

...

end finish

event ev

...

spawn(event=ev) f(table(i,j)[p], n)[p]

event_wait(ev)

Figure 3: Implicit and explicit model examples of
CAF 2.0 function shipping.

Statement Description
eventset_init Initialize a freshly allocated eventset
eventset_add Add a single event to an eventset
eventset_addarray Add an array of events to an eventset
eventset_remove Remove a single event from an eventset
eventset_destroy Remove all events from an eventset and

reclaim resources associated with it

Table 2: Eventset API for manipulating events in
the set.

Function shipping in CAF 2.0 solves this dilemma by en-
abling a program to send computation to a remote process
while preserving the consistency of logical and physical code.
As shown in Figure 3, a spawn statement causes a subrou-
tine or function to be executed on a target remote node.
Semantically, coarray function arguments reference data on
the remote node; local data arguments are carried to the
remote node. When a function has a non-void return value
assigned to a coarray variable on remote process, it is for-
warded to that process directly. In our design, any function
or subroutine can be executed on a remote node. Return
values of spawned functions are only guaranteed to be avail-
able after the immediately enclosing finish statement ends
or when the caller-specified event is signaled.

3.5 Event sets
Because we expect to use events as the basis of our asyn-
chronous point-to-point and collective communication oper-
ations, it is important that they be sufficiently flexible and
expressive. In particular, we need to support multi-event
manipulation functionality akin to the capabilities of the
Berkeley sockets select statement [25] and the MPI WAI-

TANY and WAITSOME functions [24] that await completion of
asynchronous send or receive operations.

Logically, an eventset is a set of ordered tuples 〈event,
count〉, where count is the number of times that event has
been observed to trigger within an eventset API call, and is
used for fairness purposes as detailed below. Table 2 details
the API for initializing and destroying, and adding and re-
moving elements from an event set. The parameter supplied
to eventset_init receives a handle to the newly initialized
eventset; this handle is then used as an input for the rest of
the eventset API statements. It is an error to use an eventset
handle after calling eventset_destroy: The eventset is no
longer initialized.

Statement Description
eventset_waitany Wait until one event has triggered,

checking in priority order
eventset_waitany_fair Wait until one of the events with the

least number of recorded triggers has
triggered

eventset_waitall Wait until all events have triggered
eventset_notifyall Notify all events

Table 3: Eventset API for manipulating events.

Table 3 presents the portion of the eventset API that deals
with notifying or waiting on sets of events. The statements
eventset_waitall and eventset_notifyall wait for and
signal, respectively, every event associated with the set. The
eventset_waitany statement checks each event associated
with the list to see if that event has triggered. When it
finds one, it increments the trigger count associated with
the event and resorts the list of tuples so as to avoid starva-
tion even in the case where a single node is triggered with
high frequency. Returning the ID of the triggered event
allows the caller to know which event was triggered and re-
act appropriately. eventset_waitany_fair behaves simi-
larly to eventset_waitany; however, only those events with
the fewest trigger counts are considered. This is useful in
cases where at each stage of an algorithm, it is necessary
to process each of several asynchronous events exactly once.
Without this, the same effect could be obtained by main-
taining a pair of eventsets, current and next, and explicitly
migrating events from current to next as they come in and
are processed. Once current is empty, swap the sets. Here,
a small addition to the API dramatically increases program-
mer convenience and productivity for this case.

4. CAF 2.0 ASYNCHRONY IN PRACTICE
This section presents examples from our CAF 2.0 implemen-
tations of several benchmark kernels that highlight how we
use the asynchronous primitives we propose.

4.1 HPC challenge benchmarks
The HPC Challenge Benchmark suite [13,20] is a collection
of kernels, each with different sensitivities to computational
throughput, memory latency, memory bandwidth, commu-
nication latency, and communication bandwidth. The aim
of this benchmark suite is to bound the performance of real
applications by including representative kernels at various
extremes. Because of the diverse characteristics of these
kernels, they have been a proving ground for parallel pro-
gramming models in the form of the HPC Challenge Awards
Competition–Class 2 Most Productivity [12].

Here, we present snippets from CAF 2.0 implementations of
the HPC Challenge RandomAccess, Fast Fourier Transform
(FFT), and High Performance Linpack (HPL) benchmarks.

4.1.1 RandomAccess
The HPC Challenge RandomAccess benchmark evaluates
the rate at which a parallel system can apply updates to
randomly indexed entries in a distributed table of 64-bit
words. Each table update consists of generating a random
index into the table and performing a read-modify-write op-
eration on the selected table entry. To map this code onto



module module_route
...
event, allocatable, dimension(:) :: delivered[*]
event, allocatable, dimension(:) :: received[*]
integer(8), allocatable, dimension(:,:,:) :: fwd[*]
contains

...
subroutine route
...
do i = world_logsize-1, 0, -1

partner = mod(world_rank+distance+world_size, &
world_size)

...
call split(..., fwd(1:,out,i), fwd(0,out,i), ...)
if (i < world_logsize-1) then

event_wait(delivered(i+1))
call split(fwd(1:,in,i+1),..., fwd(1:,out,i), &

fwd(0,out,i), ...)
event_notify(received(i+1)[from])

endif

copy_async(fwd(0:outgoing_size,in,i)[partner], &
fwd(0:outgoing_size,out,i), &
delivered(i)[partner], received(i))

...
from = mod(world_rank - distance + world_size, &

world_size)
enddo
end subroutine route

end module module_route

Figure 4: Using copy_async for routing updates in
RandomAccess.

a parallel system, each processor independently performs a
subset of the updates to the global table.

On distributed-memory parallel systems that lack hardware
support for shared memory, fine-grain operations on remote
data are expensive. To develop a high performance im-
plementation of RandomAccess in CAF 2.0, we exploit a
property of the Class 2 RandomAccess benchmark speci-
fication [11] that allows processors to work on bunches of
1024 updates at a time. Each CAF process image gener-
ates a batch of 1024 indices of table locations to be up-
dated and then uses log P rounds of bulk communication in
a hypercube-like pattern to route each update to the appro-
priate process image co-located with the table index being
updated. Finally, each process image locally applies updates
to its section of the distributed table.

Figure 4 shows a snippet of our CAF 2.0 implementation of
a kernel for routing updates to their proper target process
images. The code uses three coarrays: a communication
buffer (fwd) and two arrays of events (received and deliv-

ered). A copy_async operation is used to copy a batch of
updates from a slab in the fwd buffer on the local process im-
age into a slab of the fwd buffer on process image partner.
The copy_async operation is predicated to wait on event
received(i), which means that the remote buffer is empty
and available: The remote image removed data delivered to
it in round i in the last invocation of subroutine route and
acknowledged its receipt by signaling received(i) on the
process image that provided the data. After the copy_async

delivers its data into the remote buffer, it signals the event

module module_table
integer(8), allocatable :: table(:)[*]
...
subroutine apply_global_updates(buffer, size)

integer(8) :: buff(:)
...
finish
do i = 1, size
pe = ishft(buff(i), -local_table_logsize)
pe = iand(pe, world_size_minus_one)
index = iand(buff(i), local_table_size - 1)
if (pe == world_rank) then

table(index) = ieor(table(index), buff(i))
else

spawn remote_update(table,index,buff(i))[pe]
endif
update_index = update_index + 1

end do
end finish

end subroutine apply_global_updates
...
subroutine remote_update(table, index, value)

integer(8) :: table(:)[*]
...
table(index) = ieor(table(index), value)

end remote_update
...

end module module_table

Figure 5: Using function shipping for element-wise
verification.

delivered(i)[partner], informing the recipient that the
data has arrived. While the copy_async is asynchronously
forwarding updates to a communication partner, it can ex-
ecute the split operation in the next iteration of the loop.
After that computation finishes, each process image has to
wait for the delivery of its incoming batch of updates that
was initiated asynchronously by its communication partner
in the previous iteration of the loop. Here, copy_async pro-
vides just the right abstraction to simplify communication
pipelining across iterations of the routing loop.

We have also built an alternate kernel that applies fine-
grain updates using function shipping. This kernel is used
in our RandomAccess implementation to perform element-
wise verification. Figure 5 shows a snippet of the fine-grain
update kernel. While we perform local updates with stan-
dard read-modify-writes, we implement updates that target
off-node table indexes with function shipping that tells the
compiler that computation should be performed on process
pe. Since the compiler knows table is a coarray, it is eval-
uated to the correct address on remote process when enter-
ing the subroutine. buffer(i) is shipped to remote pro-
cess because it is declared as a regular array, not a coarray.
We note that, although the whole body of subroutine ap-

ply_global_updates is enclosed within a finish block, mul-
tiple rounds of finish operation will be executed since the
kernel will call the subroutine at each round of update. Ex-
plicit call to advance_async is not needed because the re-
mote update will happen when processes are waiting at the
end of finish block. We note that using one finish operation
for the whole kernel computation is probably a better choice
for performance; however, we present here its use in multiple
rounds to better illustrate the usage of finish and spawn.



module module_fft
complex, allocatable, dimension (:,2) :: c[*]
event, allocatable, dimension(:) :: ready[*]
event, allocatable, dimension(:,:) :: copied[*]
event, allocatable, dimension(:,:) :: prefetch[*]
...

contains
...
subroutine fft(n_local_size, block_size)

complex(8), target :: cbuff(0:n_local_size-1)
...
! remote communication
do l = loc_comm, levels

partner = ieor(rank, ishft(1,l-loc_comm))
event_notify(ready(l)[partner])
...
event_wait(ready(l))
...
! prefetch blocks of data
lo = index_adjustment
do outer = 0, nblocks - 1

hi = lo + block_size -1
copy_async(cbuff(lo:hi),c(lo:hi,last)[partner],&
prefetch(outer,l))
lo = lo + block_size

end do

lo = index_adjustment
do outer = 0, nblocks - 1

hi = lo + block_size -1
! Get a chunk of data
event_wait(prefetch(outer,l))

! Process it
...
! Send result to back to partner; note when done
copy_async(c(lo:hi,current)[partner], &
cbuff(lo:hi), copied(outer,l))

lo = lo + block_size
end do

! Wait until we have delivered all data to partner
do outer = 0, nblocks - 1

eventy_wait(copied(outer,l))
end do

! Sync with partner
event_notify(ready_to_proceed(l)[partner])
event_wait(ready_to_proceed(l))

end subroutine fft
end module module_fft

Figure 6: Using copy_async to overlap computation
and communication in FFT.

4.1.2 FFT
The HPC Challenge FFT (Fast Fourier Transform) bench-
mark measures the ability of a system to overlap computa-
tion and communication while calculating a very large Dis-
crete Fourier Transform (DFT). Our FFT implementation
uses a radix 2 binary exchange formulation that consists of
three parts: permutation of data to move each source el-
ement to the position that is its binary bit reversal, local
(in-core) FFT computation for as many layers of the DFT
calculation as all fit in the memory of a single processor, and
remote DFT computation for layers that span the cores of
multiple images.

Figure 6 shows a snippet of the code used to perform the
cross-core DFT computation. The main processing loop is
strip mined to divide the complex data into a series of blocks
so that while one block is being processed, the previous one
can be communicated in parallel to a partner image. The
code uses four coarrays: one (c) contains two generations of
in-process DFT data, and three are coarrays of events. Of
these, ready_to_copy indicates that an image has reached
the point where it is ready to cooperate with its partner in
calculating the DFT for a particular level, copied indicates
that one round of DFT data has been computed and trans-
ferred to to partner image, and prefetch indicates that a
block of data has been retrieved from the partner images
and is ready to be processed.

Examining the l loop, we see that each image notifies
its partner that it is ready to calculate the “butterfly” at
a level by calling event_notify on ready_to_copy. It
then waits for the partner to be ready as well , calling
event_wait on ready_to_copy. This essentially effects a
pairwise barrier between the two images. Each image then
proceeds to request the data from its partner that it will
need to compute this level; copy_async is used here for the
prefetching. We note that this prefetch is predicated on the
data having reached the partner image from the previous
round; this takes advantage of the ev_before parameter for
copy_async. A prefetch event supplied to copy_async is
signaled when the data retrieval is complete.

Turning to the outer loop, we see that for each block of data,
we wait until it has been retrieved by calling event_wait on
the prefetch event. Then, after the data is processed, we
use another copy_async to send the completed data back
to the image’s partner for use in a subsequent round. Here,
there is no need for a predicate on the copy_async: We have
already computed the data. Using copy_async instead of a
simpler put operation here allows transferring the block of
data to proceed in parallel with computing the next block.

Although it is not shown here, we note that we could
have used an eventset on the prefetched data. The
eventset_waitany_fair call is perfectly suited for process-
ing each of the prefetch blocks exactly once. This would be
useful for the case where blocks arrive out of order.

4.1.3 HPL
The HPC Challenge High Performance Linpack (HPL)
benchmark measures a system’s ability to deliver high
throughput floating point computation when solving a dense
system of linear equations. Our CAF 2.0 implementation of
HPL implements a sophisticated tiling of the computation,
capable of varying both the logical topology used to organize
processor cores, as well as the width of data panels used by
the processor cores. The matrix of equations is distributed
in block-cyclic fashion onto a processor grid organized as
one or two dimensions. The block size of the data distribu-
tion is determined by the width of data panels preferred by
the processor cores. The choice of the block size has signifi-
cant impact on the node performance of the benchmark. An
ideal block size is large enough to achieve high performance
while updating the trailing matrices, but small enough to
maintain a good load balance for scalability.



To improve performance of benchmark, we use a dual panel
structure for factorization. This increases parallelism in fac-
torization and enables us to overlap communication latency
with computation by using team_broadcast_async to com-
municate panels. An asynchronous broadcast of a panel is
initiated after the panel is factored. A broadcast gets an op-
portunity to advance each time advance_async is invoked.
Processors in the column team responsible for the next panel
along the critical path start updating and factorizing that
panel as soon as they receive the previous panel. The broad-
cast of each panel is overlapped with the update of the trail-
ing matrix using previously factorized panels and the com-
putation of the next panel factorization. An event_wait is
performed to finish a team_broadcast_async.

5. IMPLEMENTATION
5.1 Asynchronous progress engine
The asynchronous progress engine is a key piece of machin-
ery in the Coarray Fortran 2.0. It implements coopera-
tive multithreading, message-based parallelism in support
of asynchrony. There are two main design decisions here:
cooperative vs. preemptive multithreading , and message-
based (single-threaded) parallelism vs. process-based (sepa-
rate threads) parallelism. For the first of these decisions, we
note that the standard advantages apply here [19]: By not
using interrupt-driven multithreading, we avoid reentrancy
problems in both the Coarray Fortran runtime as well as
the libraries on which it is built; we avoid the overhead of
context switching; and we simplify user code as it does not
need to worry about these concerns. For the second concern,
we share the opinion of Lauer and Needham [14] that both
options are equally viable2. However, given that the support
for multithreading is limited on the BlueGene/P, one of our
target platforms, it is simpler to avoid reentrancy altogether
and use a message-based system.

With these design decisions in mind, the implementation
of the progress engine is fairly straightforward. We main-
tain a linked list of the asynchronous operations that are
currently pending. Associated with each operation is the
data structure shown in Figure 7. In it, status is an
indicator of the current state of the operation, and may
be any of ASYNC_UNINITIALIZED, ASYNC_INPROGRESS, or
ASYNC_COMPLETE. The progress_fxn field is a progress func-
tion, invoked on behalf of the operation whenever the
progress engine is active. Finally, async_state_data is a
placeholder for operation-specific data.

5.1.1 Implementing asynchronous operations
To implement an asynchronous operation in the Coarray
Fortran 2.0 runtime, one performs the following steps. First,
one decomposes the operation into a series of nonblock-
ing steps, and builds a finite state machine that can effect
the transitions between these steps appropriately. Next,
one couples this progress function with operation-specific
data in a call to async_register, which inserts the oper-
ation into the linked list of pending operations. Finally,
after initializing data for the operation, the last step is to
toggle the operation’s state from ASYNC_UNINITIALIZED to
ASYNC_INPROGRESS.

2The same arguments that apply to operating system inter-
nals apply equally to the internals of a language runtime.

typedef struct async_record_s {
async_status_t status;
struct async_record_s * next;
async_progress_fxn * progress_fxn;
long async_state_data[0];

} async_record_t;

typedef enum {
ASYNC_UNINITIALIZED, ASYNC_INPROGRESS, ASYNC_COMPLETE

} async_status_t;

Figure 7: Asynchronous progress engine: operation
data.

5.1.2 Scheduling of asynchronous operations
The asynchronous progress engine is invoked automatically
within the context of many Coarray Fortran 2.0 runtime
method implementations; however, the user may invoke it
directly via the advance_async statement. Although not
yet implemented, compiler support will eventually automat-
ically insert this statement in translated code.

There are many potential scheduling policies that we could
use when the progress engine is invoked. For now we have
implemented two of them; further exploration of the schedul-
ing policies is deferred as future work. In the first scheduling
policy, we walk the list of pending asynchronous operations
and for each, repeatedly call its progress function so long as
it indicates progress is being made. Upon reaching the end
of the list, we restart from the beginning so long as progress
was made for at least one of the pending operations. The
second scheduling policy is the same as the first, except the
list is not restarted when reaching the end.

Both policies are aggressive in trying to accomplish as much
of the asynchronous work as possible when the progress en-
gine is invoked. The decision of which policy to use, there-
fore, is an assessment of the extent to which asynchronous
operations are likely to be part of the critical path for ap-
plications.

5.2 Asynchronous collective operations
Our implementation of asynchronous collectives is in its in-
fancy. In this section, we describe the implementation of
two asynchronous collectives that we have already imple-
mented. Implementation of remaining primitives in Table 1
will follow.

5.2.1 Broadcast
In the Coarray Fortran 2.0 runtime system, we implemented
a split-phase asynchronous broadcast algorithm. The algo-
rithm is binomial tree based and therefore has logarithmic
time complexity. All process images in a team make a call
to the collective operation, making broadcast a two-sided
primitive.

Our implementation of the split-phase asynchronous broad-
cast supports multithreading. Each thread performs an
asynchronous operation on a state machine consisting of
multiple states shown in Figure 8. Each processor involving
the broadcast operation starts with state INIT where ini-
tialization of parameters is performed and buffer space for



typedef enum {
INIT, WAIT_RECV, WAIT_SEND, REPLY, WAIT_REPLY, DONE

} abcast_state_t;

Figure 8: Data structure states for split-phase asyn-
chronous broadcast.

incoming data is allocated if necessary. Each processor then
enters state WAIT_RECV. This indicates that the processor
may have not received the data and in this case it will re-
turn to perform local computation. As soon as a processor
receives the data, it initiates an asynchronous operation for
each of its successors in the multiple stages of the binomial
tree. The processor then enters state WAIT_SEND. Meanwhile
each of the newly registered asynchronous operations runs
on a separate and simpler state machine, waiting for receiv-
ing buffer address from a successor and sending the data
to the successor. The processor returns to the main state
machine at the state REPLY after all the asynchronous opera-
tions it initiated finish. Each processor entering state REPLY

sends an acknowledgement to its predecessor and changes
to state WAIT_REPLY where it makes sure all its successors
have received the data it sent out. In the final state DONE,
processors deallocates local buffers, calls event_notify, and
marks the operation ASYNC_COMPLETE.

5.2.2 Split-phased barriers
Under the hood, the barrier we implement for the Coar-
ray Fortran 2.0 async_barrier is the same sense-reversing
dissemination barrier that the regular, synchronous barrier
uses. Asynchrony is implemented through our asynchronous
progress engine. In particular, a progress function for the
asynchronous barrier checks each time it is invoked whether
the partner flag is set for the current level of the dissemi-
nation tree. If so, it moves to the next round and sets the
partner’s flag for that round. Once the last round of the
barrier is complete, the progress function transitions to a
done state in which it notifies the event associated with the
barrier and marks the operation as complete on this image.

5.3 Function shipping
Coarray Fortran 2.0’s Function Shipping makes use of the
asynchronous progress engine to ship computation to re-
mote image. Every spawned call will be converted into an
async_record_t struct and added to remote process’s asyn-
chronous operation list. The procedure is executed when the
progress engine is invoked.

The compiler generates a structure for each spawn call to
hold the arguments passed to that call. A pair of func-
tions to marshal and demarshal arguments are also be gen-
erated. Arguments to the original function are marshaled
into the structure and assigned to the async_state_data

field in the asynchronous operation data structure. The
compiler also creates a wrapper subroutine for the function
being spawned, which will first demarshal arguments and
call the original function. This wrapper subroutine serves
as a progress function to be invoked by the progress engine.

As a special case, when the function being shipped is intrin-
sic, or when it contains neither loops nor procedure calls,

we skip using the asynchronous progress engine. Instead,
such functions are executed within an Active Message (AM)
handler on the remote process. Return values assigned to
local variables are sent back using the AM reply.

5.4 Event sets
Internally, eventsets are maintained as a linked list of event/
count tuples sorted by count. When an event is added to an
eventset, it is assigned an initial trigger count of zero. It is
then inserted in the list just after the last list node with a
count of zero; this sets up initial FIFO ordering in the list.

Table 3 presents the portion of the eventset API that
deals with notifying or waiting on sets of events. The
eventset_waitany statement walks the list of events, check-
ing each one to see if it has triggered via a call to
event_trywait. When it finds one, it increments the trig-
ger count associated with the event and then resorts the
list, positioning the triggered node after any others with the
same count. eventset_waitany_fair behaves similarly to
eventset_waitany; however, rather than walking the en-
tire list, it checks only those events whose trigger counts
match that of the head node. Finally, eventset_waitall

and eventset_notifyall walk the list and wait for or sig-
nal each event, respectively.

6. RELATED WORK
Hiding latency is well known to improve application perfor-
mance. Some research projects have been devoted to trans-
form code from blocking communication into overlapped
communication and computation [6, 27].

Asynchrony has been adopted in several modern languages.
MPI 2.0 [24] has a range of nonblocking point-to-point com-
munication operations such as MPI_Isend but no nonblock-
ing collectives. Introducing asynchrony or nonblocking fea-
tures to broadcast in MPI has been studied by research
groups [2,10] to tolerate high communication latency. Some
nonblocking collective communications in MPI have been
introduced [9].

Although X10 does not have collective communication con-
structs, its async statement can be used to emulate asyn-
chronous collective operations [22]. Flat-X10 adds multi-
place spawn processes [3]. Habanero’s Phaser adds sup-
port for asynchronous collectives in X10 [23]. UPC sup-
ports primitive collective operations using an asynchronous
remote method similar to Coarray Fortran 2.0’s function
shipping. Support for asynchronous collectives is still under
proposal. GASNet implements a range of non-blocking col-
lective operations such as broadcast, reduce, scatter, gather,
exchange and allgather with performance comparable to or
better than MPI [16]. Aspen supports asynchronous collec-
tive communication [1]. OpenCL has an asynchronous copy
statement that signals an event upon completion [18]; our
asynchronous copy primitive differs in that it is predicated.

7. SUMMARY
As the gap between communication latency and compu-
tation speed becomes more and more significant, hiding
communication latency is increasingly critical for program
performance. We have presented new features in Coarray



Fortran 2.0 to allow programmers to hide latency: asyn-
chronous pair-wise communication with copy_async, func-
tion shipping for asynchronous remote procedures, and a
range of asynchronous two-sided collective operations. We
have demonstrated that these new features can be elegantly
integrated into three benchmarks: High Performance Lin-
pack (HPL), Fast Fourier Transform (FFT) and RandomAc-
cess kernels from the HPC Challenge benchmark set.

We have prototyped asynchronous features in our runtime.
They depend on the asynchronous progress engine, machin-
ery for cooperative multithreading, message-based paral-
lelism. Although their performance is not yet at the level
we would like, we are confident that they express the asyn-
chrony primitives that are needed for high performance com-
putation.

Acknowledgments
We acknowledge Fengmei Zhao for her implementation of
the bulk of the Coarray Fortran 2.0 translator. We thank
Mark Krentel for contributing scripts and a high quality
configuration and build system.

Development of Coarray Fortran 2.0 is supported by the
Department of Energy’s Office of Science under coop-
erative agreements DE-FC02-07ER25800 and DE-FC02-
06ER25754. This research used resources of the National
Energy Research Scientific Computing Center at Lawrence
Berkeley National Laboratory and the National Center for
Computational Sciences (NCCS) at Oak Ridge National
Laboratory. Both facilities are supported by the Office of
Science of the U.S. Department of Energy. NCCS is sup-
ported under Contract No. DE-AC05-00OR22725.

8. REFERENCES
[1] Q. Ali, V. S. Pai, and S. P. Midkiff. Advanced collective

communication in aspen. In ICS ’08: Proceedings of the
22nd annual international conference on Supercomputing,
pages 83–93, New York, NY, USA, 2008. ACM.

[2] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell,
C. C. Erway, J. E. Moreira, B. Steinmacher-Burow, and
Y. Zheng. Optimization of MPI collective communication
on BlueGene/L systems. In ICS ’05: Proceedings of the
19th annual international conference on Supercomputing,
pages 253–262, New York, NY, USA, 2005. ACM.

[3] G. Bikshandi, J. G. Castanos, S. B. Kodali, V. K.
Nandivada, I. Peshansky, V. A. Saraswat, S. Sur, P. Varma,
and T. Wen. Efficient, portable implementation of
asynchronous multi-place programs. SIGPLAN Not.,
44(4):271–282, 2009.

[4] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. Int. J. High
Perform. Comput. Appl., 21(3):291–312, 2007.

[5] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick.
UPC: Distributed Shared-Memory Programming.
Wiley-Interscience, 2003.

[6] A. Faraj and X. Yuan. Automatic generation and tuning of
mpi collective communication routines. In ICS ’05:
Proceedings of the 19th annual international conference on
Supercomputing, pages 393–402, New York, NY, USA,
2005. ACM.

[7] R. Gupta. The fuzzy barrier: a mechanism for high speed
synchronization of processors. In ASPLOS-III: Proceedings
of the third international conference on Architectural
support for programming languages and operating systems,
pages 54–63, New York, NY, USA, 1989. ACM.

[8] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for
barrier synchronization. International Journal of Parallel
Programming, 17(1):1–17, Feb. 1988.

[9] T. Hoefler, P. Kambadur, R. L. Graham, G. M. Shipman,
and A. Lumsdaine. A case for standard non-blocking
collective operations. In F. Cappello, T. Hérault, and
J. Dongarra, editors, PVM/MPI, volume 4757 of Lecture
Notes in Computer Science, pages 125–134. Springer, 2007.

[10] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation
and performance analysis of non-blocking collective
operations for mpi. In SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, pages 1–10,
New York, NY, USA, 2007. ACM.

[11] HPC challenge awards: Class 2 specification.
http://www.hpcchallenge.org/class2specs.pdf, June
2005.

[12] HPC challenge awards competition.
http://www.hpcchallenge.org, 2009.

[13] HPC challenge benchmark. http://icl.cs.utk.edu/hpcc.
Last accessed July 13, 2010.

[14] H. C. Lauer and R. M. Needham. On the duality of
operating system structures. SIGOPS Oper. Syst. Rev.,
13(2):3–19, 1979.

[15] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III, and
G. Jin. A new vision for coarray fortran. In PGAS ’09:
Proceedings of the Third Conference on Partitioned Global
Address Space Programing Models, pages 1–9, New York,
NY, USA, 2009. ACM.

[16] R. Nishtala. Automatically tuning collective communication
for one-sided programming models. PhD thesis, University
of California at Berkeley, Berkeley, California, 2009.

[17] R. W. Numrich and J. Reid. Co-array Fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[18] OpenCL specification v1.1.
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf,
June 2010.

[19] J. K. Ousterhout. Why threads are a bad idea (for most
purposes). Invited talk, 1996 USENIX Technical
Conference, January 1996.

[20] J. J. D. Piotr Luszczek and J. Kepner. Design and
implementation of the HPC challenge benchmark suite. CT
Watch Quarterly, 2(4a), November 2006.

[21] Project Fortress community.
http://projectfortress.sun.com, 2010.

[22] V. A. Saraswat. X10 language report. Technical report,
IBM Research, 2004.

[23] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer.
Phaser accumulators: A new reduction construct for
dynamic parallelism. In IPDPS ’09: Proceedings of the
2009 IEEE International Symposium on
Parallel&Distributed Processing, pages 1–12, Washington,
DC, USA, 2009. IEEE Computer Society.

[24] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI: The complete reference. MIT Press,
Cambridge, MA, 1996.

[25] W. R. Stevens. UNIX Network Programming: Networking
APIs: Sockets and XTI. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1997.

[26] The UPC Consortium. UPC language specification.
http://www.gwu.edu/~upc/docs/upc_specs_1.2.pdf, June
2005.

[27] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically
tuned collective communications. In Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), page 3, Washington, DC, USA,
2000. IEEE Computer Society.

[28] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: A high-performance
Java dialect. In ACM 1998 Workshop on Java for
High-Performance Network Computing, New York, NY
10036, USA, 1998. ACM Press.


